
Noname manuscript No.
(will be inserted by the editor)

Efficient, Simple and Automated Negative Sampling for Knowledge
Graph Embedding

Yongqi Zhang · Quanming Yao · Lei Chen

Received: date / Accepted: date

Abstract Negative sampling, which samples negative
triplets from non-observed ones in knowledge graph (KG),
is an essential step in KG embedding. Recently, generative
adversarial network (GAN), has been introduced in negative
sampling. By sampling negative triplets with large gradients,
these methods avoid the problem of vanishing gradient and
thus obtain better performance. However, they make the
original model more complex and harder to train. In this
paper, motivated by the observation that negative triplets
with large gradients are important but rare, we propose to
directly keep track of them with the cache. In this way, our
method acts as a “distilled” version of previous GAN-based
methods, which does not waste training time on additional
parameters to fit the full distribution of negative triplets.
However, how to sample from and update the cache are
two critical questions. We propose to solve these issues
by automated machine learning techniques. The automated
version also covers GAN-based methods as special cases.
Theoretical explanation of NSCaching is also provided,
justifying the superior over fixed sampling scheme. Besides,
we further extend NSCaching with skip-gram model for
graph embedding. Finally, extensive experiments show that
our method can gain significant improvements on various

Yongqi Zhang
4Paradigm Inc.
E-mail: zhangyongqi@4paradigm.com

Quanming Yao
Department of Electronic Engineering, Tsinghua University and
4Paradigm Inc.
E-mail: yaoquanming@4paradigm.com

Lei Chen
Hong Kong University of Science and Technology
E-mail: leichen@cse.ust.hk

Code: https://github.com/AutoML-4Paradigm/NSCaching
Correspondance is to: Quanming Yao.

KG embedding models and the skip-gram model, and out-
performs the state-of-the-art negative sampling methods.

Keywords Knowledge Graph · Graph Embedding ·
Negative Sampling · Automated Machine Learning

1 Introduction

Knowledge graph (KG) is a special kind of graph structure,
with entities as nodes and relations as directed edges. Each
edge (also called a fact) is represented as a triplet with the
form (head entity, relation, tail entity), denoted as (h,r, t),
indicating that two entities are connected by a specific rela-
tion, e.g. (Steve Jobs, founded, Apple Inc.) in the example
in Figure 1. These triplets are usually extracted manually or
based on automatically constructed knowledge bases [47].
KG is very general and useful. It has been used as funda-
mental building blocks for many applications like structured
search [16, 39], question answering [7], recommendation
[42, 64] and medical diagnosis [63]. This importance has
also inspired many famous KG projects, such as FreeBase
[6], DBpedia [2], and YAGO [47].

Fig. 1: An example of knowledge graph.

As these triplets are hard to manipulate, how to find a
good representation for entities and relations in the KG [41]

ar
X

iv
:2

01
0.

14
22

7v
1

 [
cs

.L
G

]
 2

4
O

ct
 2

02
0

https://github.com/AutoML-4Paradigm/NSCaching

2 Yongqi Zhang et al.

is a fundamental problem. Early works towards this goal
lie in statistical relational learning by using the symbolic
triplet data [29, 30, 32]. However, these methods neither
lead to good generalization performance, nor can they be
applied for large scale knowledge graphs. In comparison, the
embedding based methods have better generalization ability
and inference efficiency [8, 44, 71]. Recently, graph embed-
ding techniques [55] have been introduced in KG learning.
These methods attempt to encode entities and relations in
KG into a low-dimensional vector space while capturing the
original connection properties. They are scalable and have
also shown promising performance in basic KG tasks, such
as link prediction and triplet classification [8, 55].

In recent years, constructing new scoring functions that
can better model the complex interactions between entities
and relations has been the main focus for improving the
performance of KG embedding approaches [25, 51, 56, 60].
However, another very important perspective of KG embed-
ding, i.e., negative sampling, is not sufficiently emphasized.
The need for negative sampling comes from the fact that
there are usually only positive triplets in KG [30, 55].
First, to avoid trivial solutions of the embedding, a set
that contains all the possible negative samples needs to be
hand-made. Then, in consideration of both computation cost
and memory space, stochastic training is needed in each
iteration. Specifically, once we have picked up a positive
triplet, we also need to sample some negative triplets from
its corresponding negative sample set. Besides, the quality
of these negative triplets does matter.

Due to its simplicity and efficiency, uniform sampling
is broadly used in KG embedding [55]. However, it is a
fixed scheme and ignores changes in the distribution of
negative triplets during the training process. As a result, it
suffers seriously from the vanishing gradient problem [54]
and biased estimation problem [45]. As observed in [54],
most negative triplets in the sampling set can be easily
classified. Since the scoring functions tend to give observed
(positive) triplets large values, as training goes, most of the
non-observed (probably negative) triplets will have smaller
values. Thus, when negative triplets are uniformly sampled,
it is very likely that we pick up one with zero gradients.
As a result, the training process of KG embedding will be
impeded by the vanishing gradients rather than by the opti-
mization algorithm. This problem prevents KG embedding
from getting the desired performance. A better sampling
scheme, the Bernoulli sampling, is introduced in [56]. It
improves uniform sampling by considering one-to-many,
many-to-one, and many-to-many mapping in the relations
between entities. For example, given a one-to-many relation,
replacing the tail entity will have a larger chance of getting
a false negative triplet compared with replacing the head.
However, it is still a fixed and biased sampling scheme.

Therefore, dynamically sampling from the negative
triplets’ distribution to help the training process is important
and non-trivial. To efficiently capture them during training,
we have two main challenges for negative sampling: (i).
How to capture and model the negative triplets’ dynamic
distribution? and (ii). How can we effectively sample the
negative triplets? Recently, there are two pioneering works,
i.e., IGAN [54] and KBGAN [11], attempting to address
these challenges. Their ideas are to replace the fixed sam-
pling scheme with a generative adversarial network (GAN)
[20] based sampling scheme. However, GAN-based solu-
tions still have many problems. First, GAN increases the
number of training parameters because an extra generator
should be learned as sampler. Second, the training of the
GAN model usually suffers from instability and degeneracy
[1, 22]. The REINFORCE gradient [58], which is known to
have high variance, should be used to train the generator.
Besides, since only a few negative triplets can lead to large
gradient, IGAN and KBGAN take a lot of effort to model
the distributions of all the negative ones. These drawbacks
lead to instable performance for different scoring functions,
and hence pre-training becomes a must for both IGAN and
KBGAN. Self adversarial sampling (Self-Adv) [48] uses the
self embedding model to replace the generator. It solves the
problem of training GAN model, but it cannot guarantee to
sample enough negative triplets with large gradient in each
iteration.

In this paper, to address the challenges of capturing the
dynamic and complex negative sampling distribution while
avoid the problems of using GANs, we propose a simple
and efficient negative sampling method based on the cache,
called NSCaching. By empirically analyzing the gradient
norm distribution of negative triplets, we find that the distri-
bution is highly skewed. In other words, there are only a few
pairs of training triplets (i.e., a positive triplet and a negative
triplet) have large gradient and the others are useless. This
observation motivates us to mainly maintain the negative
triplets that lead to large gradients during the training, and
dynamically update the maintained triplets. First, we use
the cache to store large-gradient negative triplets. Then,
we carefully design the updating and sampling rules for
the cache. In detail, the cache-based sampling problem is
formed as a hyper-parameter optimization (HPO) problem,
and we use automated machine learning (AutoML) [61] to
efficiently solve it. In this way, we automatically take good
care of “exploration and exploitation” (E&E) [34], which
balances exploring all possible high-quality negative triplets
and sampling from a few of them in the cache. Contributions
of our work are summarized as follows:

– We propose a simple, efficient and automated negative
sampling algorithm NSCaching, which is a general nega-
tive sampling scheme and can be easily injected into many

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 3

popularly used KG embedding models. NSCaching has
fewer parameters than both IGAN [54] and KBGAN [11].

– We provide intuitions about how NSCaching helps the
KG training under convex and non-convex cases. in the
convex case, we show that the negative sampling scheme
in NSCaching can lead to a smaller approximation error.
In the general non-convex case, we show that NSCaching
can benefit from self-paced learning [3, 31] by learning
easy samples first and gradually switching to harder ones.

– A critical issue in the NSCaching algorithm is how to
balance “exploration and exploitation”(E&E) in updating
and sampling from the cache. Motivated by the success
of automated machine learning [61], we propose an auto-
mated version of NSCaching, i.e., NSCaching (auto). The
AutoML-based method has a unified view of the hyper-
parameters (related to E&E) of NSCaching, and also
covers IGAN/KBGAN as special cases. Thus, it enables
us to automatically balance E&E.

– We conduct experiments on five popular data sets,
i.e., WN18 and FB15K (and their variants WN18RR
and FB15K237), and YAGO3-10. Experimental results
demonstrate that the NSCaching algorithm is very effi-
cient and is more effective than the baselines as well.
The automated version further improves NSCaching by
balancing between exploration and exploitation better.

– We extend the negative sampling algorithm from KG
embedding to graph embedding. Random walk based
graph embedding [21], which is trained with the widely
used skip-gram model [36], is chosen as the testbed.
The cache-based negative sampling is used to replace the
frequency-based negative sampling in skip-gram mod-
els. Experiments on the graph embedding show that
NSCaching adapts well to the new task.

The preliminary version of this paper has been published
in ICDE 2019 [69]. Comparing with [69], we have made the
following important improvements:

1. We systematically extend the algorithm by introduc-
ing AutoML to automatically balance E&E by hyper-
parameter optimization (Section 3.4). The AutoML ap-
proach not only helps to improve the performance of
NSCaching, but also offers insight on how GAN-based
methods work;

2. We extend NSCaching to a new task, i.e., graph embed-
ding based on the skip-gram model (Section 4). We show
that NSCaching algorithm can be easily adopted into
such a new application scenario and get good empirical
performance (Section 5.7).

3. We add theoretical explanation of how NSCaching leads
to a smaller approximation error when the objective is
convex (Section 3.3.1). The new result provides intu-
itions about how NSCaching helps train embeddings.

4. Based on the theoretical analysis, we reform the problem
from gradient point of view in Section 3.1, and added

Table 1: Symbols and notations.

Symbol Description
E ,R the set of entities and set of relations

h, t ∈ E ,r ∈R head and tail entity, relation
S ≡ {(h,r, t)} the set of triplets

S̄i = {(h̄i,ri, t̄i)} the set of negative triplets for (hi,ri, ti)
h, t ∈ Rd1 embedding of head entity and tail entity
r ∈ Rd2 embedding of relation

C the cache
f (h,r, t) the scoring function of the triplet (h,r, t)
Ni ⊂ S̄i candidate subset of negative triplets
N1,N2 cache size |Ci|, candidate size |Ni|

α1,α2,α3 > 0 temperature values for softmax function

positive sampling into the algorithm (Section 3.2.2). To
our knowledge, the positive sampling problem has not
been explored in KG embedding area.

5. Moreover, we have conducted more experiments with
new data sets, scoring functions and tasks to show the
effectiveness of our algorithm (Section 5.3), automated
machine learning to further boost performance (Sec-
tion 5.4), ablation study to analyze the design compo-
nents (Section 5.5), synthetic setting to illustrate the
convergence properties (Section 5.6.2), and graph em-
bedding to verify the extension to the skip-gram model
(Section 5.7).

Notations. The mostly used symbols and their descriptions
are given in Table 1. Vectors are denoted by lowercase
boldface, and matrices by uppercase boldface. Re(·) takes
the real part of complex numbers, con j(t) = treal − itimage
is the conjugate of complex vectors t = treal + itimage ∈ Cd .
〈a,b,c〉= ∑

d
i=1 ai ·bi · ci is the inner product.

2 Preliminaries and Related Works

In this section, we introduce the stochastic training algo-
rithm for KG embedding in Section 2.1, current strategies
for negative sampling in Section 2.2, and AutoML tech-
niques in Section 2.3.

2.1 Knowledge Graph (KG) Embedding

To build a KG embedding model, we first need to pick up a
scoring function f , which captures the similarities between
two entities based on a relation [55]. Different scoring func-
tions have their own weaknesses and strengths in capturing
the underneath interactions. Some popularly used scoring
functions are presented in Table 2. Besides, the observed
facts in KG are supposed to have larger scores than the
non-observed ones [55]. With the factual information, the

4 Yongqi Zhang et al.

Table 2: Definitions of some popular scoring functions. All
model embeddings are real values, except that ComplEx has
complex values. h1,r1, t1 and h2,r2, t2 are indexed from two
different sets of embeddings.

model scoring function definition

transna- TransE [8] −‖h+ r− t‖1

tional TransH [56] −
∥∥h−w>r hwr + r−(t−w>r twr)

∥∥
1

distance TransD [25] −
∥∥h+wrw>h h+ r−(t+wrw>t t)

∥∥
1

semantic DistMult [60] 〈h,r, t〉
matching ComplEx [51] Re(〈h,r,conj(t)〉)

SimplE [27] 〈h1,r1, t2〉+ 〈h2,r2, t1〉

embeddings are learned by solving the optimization problem
that maximizes the scoring function for observed triplets
and minimizes it for non-observed triplets at the same time.
Based on the properties of scoring functions, KG embedding
models are generally divided into two categories.

– The translational distance model exploits the distance-
based scoring functions. Inspired by the word anal-
ogy results in word embeddings [37], the similarity is
measured by the distance between two entities, after a
translation carried out by the relation. TransE [8], as
a representative translational model, is defined by the
(negative) distance between h+ r and t, i.e., f (h,r, t) =
−||h+ r− t||1. Other translational distance models like
TransH [56], TransD [25] enhance over TransE by
introducing extra mapping matrices. The translational
distance models are generally optimized by minimizing
the ranking based loss function

∑
(hi,ri,ti)∈S

∑
(h̄i,ri,t̄i)∈S̄i

[
γ− f (hi,ri, ti)+ f (h̄i,ri, t̄i)

]
+
, (1)

where γ > 0 is the margin value for the loss function.
– Scoring functions in semantic matching models exploit

the similarity of a triplet by matching latent semantics
of entities and relations embedied in their vector space
representations. Bilinear models are the state-of-the-art
among the semantic matching models and they share the
form as f (h,r, t) = h>Rt, where R ∈ Rd×d is a matrix
referring to the embedding of relation r [55]. DistMult
[60] measures the similarity by directly computing the
element-wise product of the embedding vectors, i.e.,
f (h,r, t) = 〈h,r, t〉, which restricts R to be a diagonal
matrix. However, it can not model asymmetric triplets
since f (h,r, t) = f (t,r,h) is always satisfied. ComplEx
[51] and SimplE [27] improve over DistMult by dealing
with asymmetric triplets in different ways. Another type
of models conducts semantic matching using neural
networks. Multi-Layer Perceptron (MLP) is used in [15]
to measure the similarities. ConvE [13] takes advantage

of convolutional neural network to increase the interac-
tions among different dimensions. Even though neural
network models are more complex than the bilinear
models, they empirically perform worse than the bilinear
models [27, 51]. The semantic matching models are
mainly optimized by minimizing the classification based
loss function

∑
(hi,ri,ti)∈S

∑
(h̄i,ri,t̄i)∈S̄i

`(1, f (hi,ri, ti))+`
(
−1, f (h̄i,ri, t̄i)

)
, (2)

where (h̄,r, t̄) 6∈S is the hand-made negative triplet for
(h,r, t) and `(α,β) = log(1+ exp(−αβ)).

Algorithm 1 Stochastic gradient descent for knowledge
graph embedding [8, 55].
Require: training set S = {(h,r, t)}, embedding dimension d and

scoring function f ;
1: initialize the embeddings for each e ∈ E and r ∈R.
2: for i = 1, · · · ,T do
3: sample an observed triplet (hi,ri, ti) ∈S ;
4: sample the corresponding negative triplet (h̄i,ri, t̄i) ∈ S̄i; //

negative sampling
5: update parameters of embeddings w.r.t. the gradients using

(i). translational distance models:

∇
[
γ− f (hi,ri, ti)+ f

(
h̄i,ri, t̄i

)]
+
, (3)

or (ii). semantic matching models:

∇
[
`(+1, f (hi,ri, ti))+ `

(
−1, f (h̄i,ri, t̄i)

)]
; (4)

6: end for

The above two objectives, i.e., (1) and (2), can be
optimized by using stochastic gradient descent in an unified
manner (Algorithm 1). In each iteration, an observed (posi-
tive) triplet (hi,ri, ti) is firstly sampled from the training set
S at step 3. Since there are no negative triplets in S , in
step 4, a negative triplet of (hi,ri, ti) is sampled from the
corresponding negative triplets set S̄i [8], i.e.,

S̄i =
{
(h̄,ri, ti) /∈S | h̄ ∈ E

}
∪{(hi,ri, t̄) /∈S | t̄ ∈ E } . (5)

Finally, embedding parameters are updated in step 5. Since
the quality of negative triplets in S̄i is diverse, how to sam-
ple a proper (h̄i,ri, t̄i) has been developed as an important
perspective affecting the performance of knowledge graph
embedding [11, 48, 54, 55].

2.2 Negative Sampling in KG Embedding

Negative sampling is important for improving learning
models when there are only positive samples. The typical
applications include natural language processing [12,33,38],

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 5

computer vision [59], graph embedding [21, 44, 49], recom-
mender system [14, 46, 62, 66], and KG embedding [8, 55]
here. Existing works on negative sampling can be divided
into two categories, i.e., sampling from fixed distribution
and sampling from dynamic distribution.

A uniform distribution over the negative samples in
the candidate set is a simple yet efficient choice [8, 46].
Whereas, many of the uniformly generated negative samples
are not informative and too trivial to recognize [14, 33, 38,
59]. In order to generate more informative negative samples,
important statistics in the data set can be used to define
the distribution, such as the frequency of words [37] and
personalized PageRank score of items [65]. However, the
uniform sampling methods are biased-estimator of the full
negative sampling distribution [45].

As the training goes on, the distributions of scores
and gradients of negative samples keep changing. In order
to capture the dynamic distribution of negative samples,
several works are proposed to sample according to the scores
[9,12,14,18,33,54,59]. There are two approaches in general.
In one direction, the high-quality negative samples are
selected based on the scores in a small pool sampled from
all the candidates [33, 48]. This approach is efficient since
only a small number of the scores need to be computed. In
another, a distribution on all the candidates is modeled to
generate the high-quality negative samples [18, 54]. Having
an overall distribution of the negative samples makes these
method more flexible.

In the following content, we discuss the sampling meth-
ods specifically used in KG embedding tasks.

2.2.1 Sample from Fixed Distributions

In the early work [8], negative triplets are uniformly sampled
from the set S̄i. This strategy is simple yet very efficient.
Later, a better sampling scheme, i.e., Bernoulli sampling,
is introduced in [56]. It improves uniform sampling by
reducing the appearance of false negative triplets existing
in one-to-many, many-to-many, and many-to-one relations
between head and tail entities. However, as mentioned in the
introduction, the Bernoulli method still samples from fixed
distributions, which can neither model the dynamic changes
in distributions of negative triplets nor can it sample triplets
with large gradient.

As introduced in Section 1, the vanishing gradient (or
zero loss) problem [54] means a certain number of negative
triplets will lead to zero gradient and thus is not informative
for training with gradient-based optimization algorithms.
Taking the ranking based loss (3) for example, the score
of negative triplets f (h̄i,ri, t̄i) are gradually minimized as
training goes on. For most of the negative triplets, the score
will be very small and the loss will decrease to zero soon,
leading to zero gradients. The gradient on classification loss

(4) will go close to zero if f (h̄i,ri, t̄i) is small. As a result,
those negative triplets cannot provide enough gradient value
to update the embeddings. Besides, the fixed sampling
methods cannot capture the dynamic distribution of negative
triplets, leading to a biased estimator.

2.2.2 Sample from Generative Adversarial Network (GAN)

GAN [20] is originally introduced as a powerful model for
image generation. It contains two modules: a generator that
serves as the sampler, and a discriminator that measures
the quality of generated samples. Under elaborate control
on the training procedure of generator and discriminator,
GAN has achieved significant success in many fields, e.g.,
computer vision [1, 22], natural language processing [17],
information retrieval [53] and graph mining [52]. It has also
been shown to generate negative samples with high-quality
for knowledge graph embedding [11, 48, 54].

When GAN is applied to negative sampling, the jointly
trained generator can dynamically adapt to the new distribu-
tions by confusing the discriminator and keeping training.
The discriminator, i.e., the KG embedding model, learns to
distinguish between the positive triplets and the negative
triplets sampled by the generator. Under an alternating
training process, the generator dynamically approximates
the negative sample distribution and the KG embedding
model is improved by the negative triplets with relatively
large gradient sampled by the generator.

Given a positive triplet (h,r, t), IGAN [54] models the
distribution h̄, t̄ ∼ p(e|(h,r, t)) over all the entities to sample
a negative triplet (h̄,r, t̄). The gradient of (h̄,r, t̄) is approxi-
mately measured by the discriminator, i.e., the loss function
` =

[
γ− f (h,r, t)+ f (h̄,r, t̄)

]
+

of the target KG embedding
model. By joint training, IGAN can dynamically capture the
distribution of all negative triplets. Instead of modeling a
distribution over the whole entity set, KBGAN [11] learns
to sample from a subset of random entities. A set of entities
N = {(h̄,r, t̄)} is uniformly sampled first and then the
negative triplet is picked up from N . KBGAN is more
efficient than IGAN, but less effective since it is hard to
guarantee the candidate set N to contain enough large-
gradient negative triplets.

Even though GAN provides a solution to model the
dynamic negative sample distribution, it is famous for
suffering from instability and degeneracy [1, 22]. Besides,
REINFORCE gradient [58], which is known to have high
variance, has to be used to optimize the generator. There-
fore, pretraining is a must for both IGAN and KBGAN. It
increases the number of model’s parameters and brings extra
costs on training. A concurrent method Self-Adv [48] adopts
a similar approach as KBGAN. The differences are that (i)
Self-Adv uses the self model embedding to measure the
quality rather than training an extra generator; (ii) Self-Adv

6 Yongqi Zhang et al.

treats the probability as weights rather than the sampling
procedure. However, it still cannot guarantee the candidate
set N to contain large-gradient negative triplets.

2.3 Automated Machine Learning (AutoML)

Automated machine learning (AutoML) [24, 61] has re-
cently shown its power in easing the usage of and in de-
signing better machine learning models. It can be regarded
as a black-box optimization problem where we target at
efficiently searching for better hyper-parameters or model
structures. Regarding the success of AutoML, there are two
important perspectives

– Search space: This helps us to figure out important prop-
erties of the underlying learning model. The search space
cannot be too general, otherwise the searching cost in
such a space will be too expensive.

– Search algorithm: Since the computation cost of evalu-
ating the settings in search space is high, efficient algo-
rithms should be designed to search efficiently. Taking
hyper-parameter optimization (HPO) as an example, gird
search or random search [5] are the mostly used method
due to their simplicity. However, the searching is usually
inefficient and Bayesian optimization [4, 23] is a well-
known method to improve the efficiency in HPO.

Considering that the distribution of negative triplets is
highly skewed, as will be discussed in Section 3, we should
take the sampling distribution seriously. As will be shown
in Section 3.4, the proposed NSCaching method naturally
allows a search space to automatically balance the explo-
ration and exploitation (E&E) problem in negative sampling,
which can further improve the quality of embeddings.

3 Proposed Model

In this section, we first describe our key observations regard-
ing the negative sampling in Section 3.1, which are ignored
by existing works but are the main motivations of our work.
The proposed method is described in Section 3.2, where we
show how to address the challenges in negative sampling
by using cache. Then, we analyze the proposed method
from theoretical perspectives in Section 3.3. In Section 3.4,
we balance exploration and exploitation through AutoML
techniques for the proposed method. Finally, we discuss the
problem of false negative triplets in Section 3.5.

3.1 Revisiting Distribution of Training Pairs

Before introducing the proposed method, we analyze the
distribution of gradients for training pairs here. This moti-
vates us to use cache to efficiently approximate an unbiased

distribution of the training pairs. Recall that the gradient at
stochastic training of KG embedding is determined by a pair
of triplets, i.e., a positive one (hi,ri, ti) from the training set
and a negative one (h̄i,ri, t̄i) from negative set S̄i (step 3-4
in Algorithm 1). We show the distribution with the `2-norm
of all the training pairs’ gradients for a positive (hi,ri, ti).

– Figure 2(a) shows changes of the training pair distri-
bution for a fixed positive triplet (hi,ri, ti) in different
epochs; and

– Figure 2(b) shows the training pair distributions for five
different positive triplets (hi,ri, ti) ∈S .

First, we can see that the distribution of training pairs’ gra-
dient are dynamic and highly skewed. Second, the training
pairs with large gradients become rare along the iterating
(epoch gets more), which is consistent with the observations
in [11, 54]. Besides, the distributions of training pairs’
gradient for different positive triplets are various.

Even though GAN has strong ability in monitoring
the full distribution of negative triplets, the GAN-based
methods still have a lot of limitations. First, they waste a
lot of parameters and computational costs on learning how
negative triplets with small gradient norms are distributed.
Second, reinforcement learning, which provides gradient to
the generator but increases the training difficulties, should
be applied in the GAN-based algorithms [11, 54].

Besides, the GAN-based methods ignore the distribution
of positive triplets. Since each training pair is composed of a
positive triplet and a negative triplet, the differences among
positive triplets should also be considered. Some positive
triplets can have more large gradient negative samples (see
positive triplet 2 v.s. positive triplet 1 in Figure 2(b)). Thus,
we want to more frequently pick up the positive triplets with
more large gradient negative samples over the others during
the stochastic training, i.e., in step 3 of Algorithm 1. How-
ever, all existing works including [11,48,54,69] use uniform
sampling over positive triplets. For methods sampling from
fixed distributions [8, 56], they cannot model the difference
of both positive and negative triplets. GAN-based ones are
already too complex [11,54] to model the positive sampling.
Capturing the difference of positive triplets will further
increase the model’s parameters and make the training even
harder.

3.2 NSCaching: the Proposed Method

From observations in Section 3.1, we have three questions
on how to sample the training pairs (i.e., a positive and a
negative triplet).

1). Is it possible to directly keep track of negative triplets
which can give large gradient for a given positive triplet,
rather than the whole negative triplets’ distribution?

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 7

(a) Grad norm v.s epoch. (b) Grad norm v.s pos-triplet.

Fig. 2: Distribution of training pairs’ gradients on WN18 trained by Bernoulli-TransE (see Section 5.3.1). For a given triplet
(hi,ri, ti), we fix the head entity h and relation r, and compute the `2-norm of gradient ‖g‖2 in (3) for all t̄ ∈ E . We measure
the complementary cumulative distribution function (CCDF) F‖g‖2(x) = P(‖g‖2 ≥ x) to show the proportion of negative
triplets that satisfy ‖g‖2 ≥ x. (a) is the distribution of training pairs in 5 timestamp of a certain triplet (hi,ri, ti). (b) is the
distribution of 5 different triplets (hi,ri, ti) after the pretraining stage.

2). How can we adaptively sample positive triplets having
more large-gradient training pairs?

Besides, considering the distribution is dynamic and hard to
estimate,

3). how to balance exploring all the training pairs leading to
large gradient and exploiting those that have the largest
gradient norms?

In this section, we describe the proposed method to
address these three questions.

3.2.1 Core Idea: Caching training pairs

As in Section 3.1, the total number of large-gradient nega-
tive triplets associated with a positive one is small. There-
fore, we are motivated to use a small amount of extra
memory, which caches negative samples with large gradient
norms for each triplet (hi,ri, ti) ∈ S . The designed cache
acts as a truncated representation of triplets’ distribution
(h̄i,ri, t̄i) ∈ S̄i. Such an idea is previously explored in
Word2Vec [37], where the estimated distribution of negative
samples is also truncated. This improves both the efficiency
and quality of negative sampling.

Note that, as in (5), the negative triplet (h̄i,ri, t̄i) 6∈S is
formed by either (h̄i,ri, ti) or (hi,ri, t̄i). Thus, we associate
each (hi,ri, ti) with

– a cache Ci, which keeps large-gradient triplets from
S̄i, to store a set of (h̄i,ri, ti) or (hi,ri, t̄i) and the
corresponding gradient norms ‖gi‖ (given by (3) or (4)).

However, since the size of S̄i is very large, evaluating
all of them in S̄i to pick up the large-gradient triplets is
intractable. The proposed method will adaptively sample

a pair of positive and negative triplets directly through the
cache. In the sequel, we show how the cache is updated and
sampled.

3.2.2 Algorithm Framework

Algorithm 2 shows the KG embedding framework based
on our cache-based negative sampling scheme. Note that
the proposed algorithm does not depend on the choice of
scoring functions, all those in Table 2 can be used here.
In Algorithm 2: first, a pair of positive triplet and negative
triplet is sampled in step 3; then, the cache is updated in
step 5; finally, in step 7, the embeddings are updated based
on the choice of scoring functions and loss functions.

Algorithm 2 NSCaching: Cache-based KG embedding.
Require: training set S = {(h,r, t)}, embedding dimension d, scoring

function f .
1: initialize embeddings for each e ∈ E and r ∈R, and cache C ;
2: for i = 1, · · · ,T do
3: sample a pair of positive and negate triplet, i.e., (h,r, t) and

(h̄,r, t̄), using Algorithm 3;
4: if i%(n+1) == 0 then
5: update the cache Ci using Algorithm 4;
6: end if
7: update embeddings using (3) or (4);
8: end for

An overview comparison of the proposed method with
state-of-the-art negative sampling method is in Table 3. The
main difference with general KG embedding framework
in Algorithm 1 is step 3 in Algorithm 2, where the sam-
pling scheme is based on the cache rather than a uniform
Bernoulli sampling. Besides, compared with the complex

8 Yongqi Zhang et al.

Table 3: Comparison of the proposed approach with state-of-the-arts, which address the negative sample. Model parameters
are based on TransE, m is the size of mini-batch, n is the epoch of lazy-update.

triplet sampling
training

mini-batch computation model

positive negative time space parameters

baseline uniform random (UR) gradient descent (from scratch) O(md) O(md) (|E |+ |R|)d
IGAN [54] UR GAN reinforce learning (with pretraining) O(m|E |d) O(m|E |d) 3(|E |+ |R|)d

KBGAN [11] UR GAN reinforce learning (with pretraining) O(mN1d) O(mN1d) 2(|E |+ |R|)d
NSCaching using the cache gradient descent (from scratch) O(m

n+1 (N1 +N2)d) O(m(N1 +N2)d) (|E |+ |R|)d

GAN-based works [11, 54], our method in Algorithm 2 acts
like a discriminative and distilled model of GAN, and it
only cares about negative triplets leading to large gradient
norms during the training. Thus, the proposed NSCaching
algorithm not only has fewer parameters, but also can be
easily trained from randomly initialized models (from the
scratch). Moreover, experimental results in Section 5 show
that NSCaching achieves the best performance.

However, in order to achieve a good performance, we
need to carefully design how to sample from the cache
(step 3) and how to update the cache (step 5). In these
steps, “exploration and exploitation” (E&E) [34] is the main
concern. Specifically, how to keep the balance between
exploration (explore all the possible large-gradient negative
triplets in S̄) and exploitation (sample the training pair
leading to the largest gradient norm in cache C).
1). Sampling from the cache (step 3). Before describing the
sampling scheme, we introduce some notations for subse-
quent usage. Let c(i) be a N1-dimensional vector containing
gradient norms of (h̄i j ,ri, t̄i j) ∈ Ci, j = 1 . . .N1. Thus, if the

j-th element c(i)j is larger, it means that the j-th negative
triplet (h̄i j ,ri, t̄i j) in cache is of higher quality. Finally,
we further define a vector p, of which the length is the
number of positive triplets S and each element pi = ‖c(i)‖2.
Intuitively, if pi is larger, then (hi,ri, ti) is more likely to have
more large-gradient negative triplets.

As in Algorithm 2, we need to sample a pair of positive
and negative triplets. Based on above notations, we can do it
as follows. First, we can pick up a positive triplet (hi,ri, ti)∈
S following a probability distribution given by

p((hi,ri, ti)) = σ1(pi;p), (6)

where the distribution σ1(pi;p) satisfies that

Algorithm 3 Sampling from the cache (step 3).
Require: Training set S and cache C .
1: sample a positive triplet (hi,ri, ti) ∈S according to p((hi,ri, ti))

in (6);
2: index the specific cache Ci of (hi,ri, ti);
3: sample a negative triplet (h̄ j,r j, t̄ j) from Ci according to

p
(
(h̄i j ,ri, t̄i j)

)
in (7).

– ∑a σ1(pa;p) = 1; and σ1(pa;p)≥ σ1(pb;p) if pa ≥ pb.

In this way, (hi,ri, ti) will be more frequently sampled if pi
is larger. Then, after picking up the positive triplet (hi,ri, ti),
we sample the negative triplet (h̄i j ,ri, t̄i j) ∈ Ci following

p
(
(h̄i j ,ri, t̄i j)

)
= σ2(c

(i)
j ;c(i)), (7)

where σ2(c) is defined in the same way as σ1(p). The full
procedures are shown in Algorithm 3.

Remark 1 The choice of σ is important, as it greatly affects
E&E and how we can adapt to the sampling distributions.
Let us consider two extreme examples. First, if we pick σ1
as an indicator function (as in Figure 3(c)) where σ1(pi;p)=
1 if pi is the largest and σ1(p j;p) = 0 for j 6= i. Then,
it is equal to deterministically select the negative triplet
(hi,ri, ti) with the highest-quality. However, as the distri-
bution can change during iterations of the algorithm, both
of the embedding quality and the negative triplets in the
cache may not be accurate enough for the sampling in the
latest iteration. Besides, consistently sampling the largest
one may make the algorithm only focus on a small amount
of triplets, failing to capture the distribution well. Thus, we
also need to consider the other candidates except the one
with the largest pi. Second, if we take σ1(pi;p) = 1/N
for any i ∈ {1, . . . ,N} (as in Figure 3(a)) where N is the
total number of training triplets (i.e., uniform sampling is
used), then all triplets have equal possibilities to be sampled.
However, this ignores the difference of candidates. The two
cases also adapt to σ2 when negative triplets are sampled
from Ci. In Section 3.4, we will propose a novel method to
balance E&E automatically.

2). Updating the cache (step 5). As mentioned in Sec-
tion 3.1, the cache needs to be dynamically changed during
iterations of the algorithm. Otherwise, the content in cache
will not be changed and the sampling will be highly biased
since most of the negative triplets will not be visited. Thus,
we need to refresh the cache periodically. Moreover, the
cache needs to be updated in an efficient way.

As in (5), the number of negative triplets in S̄i is quite
large for a given positive triplet (hi,ri, ti). However, it is
impossible for us to evaluate all the candidates in S̄i. Since

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 9

Algorithm 4 Updating the cache (step 4).
Require: cache Ci of size N1.
1: initialize Ĉi← /0, ĉ(i) = 0.
2: sample a subset Ni ⊂ S̄i with N2 triplets;
3: compute ‖gk‖2 for all (h̄,r, t̄) ∈Ni∪Ci;
4: for j = 1, · · · ,N1 do
5: sample (h̄ik ,ri, t̄ik) with probability in (8);
6: remove (h̄ik ,ri, t̄ik) from Ni∪Ci;
7: Ĉi← Ĉi∪{(h̄ik ,ri, t̄ik)};
8: ĉ(i)k = ‖gk‖2;
9: end for

10: update by Ci← Ĉi.
11: return Ci← Ĉi and c(i)← ĉ(i).

we want to efficiently capture the large-gradient negative
triplets in Ci, we sample a small subset Ni ⊂ S̄i of size
N2, with N2 �

∣∣S̄i
∣∣. Then for each (h̄ik ,ri, t̄ik) ∈ Ni ∪ Ci,

we evaluate the gradient norm ‖gk‖2 by (3) or (4). Then
we construct a new set Ĉi ⊂ Ni ∪Ci, whose components
are sampled from Ni ∪ Ci without replacement N1 times
following the probability distribution

p
(
(h̄ik ,ri, t̄ik)

)
= σ3 (gk;g) . (8)

Finally, Ĉi, which contains N1 negative triplets and their
corresponding gradient norms ĉ(i), are returned.

Remark 2 Exploration and exploitation also need to be
carefully balanced in Algorithm 4. As the cache needs to
be updated, we have to sample from S̄i. The subset Ni is
chosen as a substitute of S̄i in consideration of efficiency.
Therefore, a bigger N1 implies more exploitation, while a
larger N2 leads to more exploration. In step 5, indeed, the
choice of σ3 is important under the same consideration as
σ1 and σ2. The balance of E&E on N1, N2 and σ3 is further
discussed in Section 3.4.

3.2.3 Space and Time Complexities

In this part, we analyze the space and time complexities of
NSCaching (Algorithm 2). Comparing with basic training
framework in Algorithm 1, the main additional cost by
introducing cache comes from step 5 in Algorithm 2, i.e.
updating the cache using Algorithm 4. In Algorithm 4, the
main time cost comes from computing the gradients ‖gk‖2
for N1 + N2 training pairs, whose complexity is O((N1 +

N2)d). The cost of step 3 in Algorithm 2 is rather small,
which comes from importance sampling according to the
gradient norms. This part takes O(N1) time. Hence, the total
cost by introducing the cache is O((N1 +N2)d) for a single
training pair. In practice, we can lazily update the cache ev-
ery n epochs rather than do immediate updating, which can
further reduce the updating complexity to O((N1+N2)d/(n+1)).

As for the space complexity, evaluating the gradients for
N1 +N2 training pairs takes O((N1 +N2)d) space. Since we

only store indexes in the cache, it takes O(|S |N1) space
to store these indexes for negative triplets. Note that, N1 is
small since large-gradient negative triplets are rare. This is
also verified in our experiments in Section 5.4.3.

In comparison, to generate a training pair, the generator
in IGAN [54] takes O(|E |d) time since it needs to compute
the distribution over all entities. KBGAN [11] needs O(N1d)
time to measure a candidate set of N1 triplets. The additional
space cost for IGAN and KBGAN is also O(|E |d) and
O(N1d) respectively. Finally, the comparison of space and
time complexities is summarized in Table 3 with TransE as
the scoring function.

3.3 Theoretical Analysis

In this part, we theoretically analyze the convergence and
learning performance of the proposed method.

3.3.1 Convex Case: Faster convergence

Before presenting our analysis, we first simplify and take
a uniform treatment over (1) and (2). Let w = {h,r, t}, then
we can take the loss φi(w) on a training pair for translational
distance model as

φi(w) =
[
γ− f (hi,ri, ti)+ f (h̄i,ri, t̄i)

]
+
, (9)

and for semantic matching model as

φi(w) = `(1, f (hi,ri, ti))+ `
(
−1, f (h̄i,ri, t̄i)

)
. (10)

Thus, we can express (1) and (2) as

min
w

F(w)≡ 1
n ∑

n
i=1 φi(w), (11)

where n is the number of all the training pair of positive
and negative triplets. Using above notation, we can abstract
NSCaching (Algorithm 2) as in Algorithm 5. Basically, the
cache scheme is used to generate a probability distribution
pt over all φi, which changes over iterations.

Algorithm 5 Abstraction of NSCaching.
1: for t = 1, · · · ,T do
2: sample φit from {φi}n

i=1 based on pt ;
3: update wt+1 by wt+1 = wt −η(npt

i)
−1∇φit (wt);

4: end for

The convergence of Algorithm 5 is in Theorem 1, which
is inspired by some recent works in stochastic optimization
[40, 70].

10 Yongqi Zhang et al.

Theorem 1 If F is smooth and convex, then

1
T ∑

T
t=1E

[
F(wt)

]
−E [F(w∗)]

≤ 2
ηT
‖w∗−wt‖2+

η

2σT ∑
T
t=1E

[
‖∇φit (w

t)/npt
it
‖2] , (12)

where w∗= argminw F, η is the step-size for stochastic
optimization, and expectation is taken w.r.t. distribution pt .

The proof is in Appendix A. As we can see, how fast and
well wt converges to the optimal solution depends on pt via
the second term in (12). The solution which minimizes this
term is offered in Proposition 1.

Proposition 1 ([70]) E
[
‖∇φit (w

t)/npt
it
‖2
]

is minimized when
the possibility pt follows pt

i = ‖∇φi(wt)‖/∑
n
j=1 ‖∇φ j(wt)‖.

Since the cache scheme is used to avoid vanishing gra-
dient problem and distill the full sampling distribution, the
samples with larger ‖∇φi(wt)‖ should have higher possibil-
ity to be sampled. If the dynamic distribution pt is captured,
we can then adaptively sample from it. In other words, the
sample it with larger pt

it has larger possibility to be sampled.
As a result, the last term in (12) in NSCaching can have
smaller value compared with the uniform sampling. This
indicates that NSCaching has both faster convergence speed
and smaller approximation error. In practice, most of the
existing embedding models are non-convex and stochastic
optimization [28] is used to update the parameters. However,
the above bound still offers insights on how the proposed
method works.

3.3.2 Nonconvex Case: Self-paced learning

The main idea of self-paced learning (or curriculum learn-
ing) [3, 31] is to pick up easy samples first, and then
gradually switch to harder ones. In this way, the classifier
can firstly identify the rough position where the decision
boundary should locate. Then the boundary can be further
refined by the hard examples. It is effective for complex
and noncovex models. Recently, self-paced learning is also
introduced into graph embedding and the improvement on
the quality of embeddings has been reported [18]. Besides,
GAN is also used to monitor the distribution of edges
in the network, and negative edges with scores above a
given threshold are sampled from the generator in GAN.
Self-paced learning is achieved by increasing the threshold
during the training of embedding [18]. As a comparison, the
GAN models used in KBGAN and IGAN are not benefited
from self-paced learning.

In contrast, our caching scheme can explicitly benefit
from it. The reason is that the embedding model only has
weak discriminative ability in the beginning of the training.
Thus, while there exist a lot of negative triplets leading to

large gradient norms, it is more likely that they are easy
ones as most of the negative samples are easily classified.
As training process continuous, those easy samples will
gradually have small gradients and are removed from the
cache. These mean NSCaching will learn from easy samples
first, but then gradually focus on hard ones, which is exactly
the principle of self-paced learning. The above explanations
are also verified by experiments, where we can see the
negative triplets in the cache change from easy to hard ones
(Section 5.6) and NSCaching (training from scratch) can
already achieve better performance than IGAN and KBGAN
with pretraining (Section 5.3).

3.4 Automatic Balancing Exploration and Exploitation

In previous parts, we have described the proposed frame-
work (Section 3.2) and analyzed why it works (Section 3.3).
Based on Proposition 1, we aim to capture the dynamic
sampling distribution pt

i = ‖∇φi(wt)‖/∑
n
j=1 ‖∇φ j(wt)‖. To guar-

antee efficiency, we design the sampling scheme (Algo-
rithm 3) and updating scheme (Algorithm 4) to distill such
a distribution. However, the distributions for different tasks
and for different training status are different in practice.
Therefore, we should carefully adjust the sampling and
updating schemes. As mentioned in Section 3.2, to achieve
better performance for different scenarios, the remained
question is how can we carefully balance E&E? Here, we
show how AutoML techniques can be combined with the
proposed framework to automatically balance E&E.

3.4.1 Search Space from NSCaching

From Remarks 1, 2 and Proposition 1, we can see that
σ(ai;a) needs to cover three special cases, i.e., (i). uniformly
sampling on all elements, (ii). deterministically sampling
the max, and (iii). importance sampling as Proposition 1.
Thus, we are motivated to choose the weighted softmax
distribution as the probability function

σ(ai;a) = exp(α·ai)/∑ j exp(α·a j), (13)

where α ≥ 0 is a hyper-parameter to be tuned. We can
see α = 0 covers (i) as in Figure 3(a), α = ∞ covers (ii)
as in Figure 3(c), and other values of α cover (iii) as in
Figure 3(b). Specifically, we use three different α’s for (6),
(7) and (8) respectively.

3.4.2 Search by Bayesian Optimization

All hyper-parameters balancing E&E are summarized in
Table 4. Manually tuning these hyper-parameters is time
consuming. Simple search approaches such as grid search
and random search are usually inefficient. Inspired by the

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 11

(a) uniform function α = 0 (b) general softmax α = 1 (c) indicator function α = inf

Fig. 3: Example of the different distributions of σ , where x-axis indicates each dimension of a in (13) and y-axis is the
sampling probability.

Table 4: How exploration and exploitation (E&E) in Algo-
rithm 2 are affected by hyper-parameters.

hyper-parameters functionality larger leads to

α1 positive sample (hi,ri, ti) exploitation

α2 negative sample (h̄i,ri, t̄i) exploitation

α3 update Ci exploitation

N1 size of cache Ci exploitation

N2 size of subset Ni exploration

choice of (13), and the recent success of automated machine
learning (AutoML) [61], especially hyper-parameter opti-
mization, we use a versatile hyper-parameter optimization
method, i.e., Sequential Model-based optimization for gen-
eral Algorithm Configuration (SMAC) [23]. SMAC allows
efficiently and automatically tuning of both discrete (N1 and
N2) and continuous (α1, α2 and α3) hyper-parameters.

3.4.3 Discussion: connection with existing methods

The hyper-parameters in Table 4 can not only help us
balance E&E, but also give a unified view of the baselines,
namely covering Bernoulli, KBGAN and IGAN as special
cases. In this part, α1 is always 0 since none of the three
methods consider non-uniform positive sampling.

– Bernoulli [56]: In Bernoulli sampling, negative samples
are generated uniformly from the whole candidate space.
In this case, we can set both α2 and α3 to be 0. Then, the
cache updating is never dependent on scores as well as
the sampling schemes. Therefore, Bernoulli sampling is
a special case of NSCaching when α2 = α3 = 0;

– KBGAN [11]: The key thought in KBGAN is to use
a generator to pick up large-gradient negative samples
in a random subset Ni ∈ S̄i. Given a positive triplet
(hi,ri, ti), the scores c(i)j stored in cache work as an alter-
native of the generator in KBGAN to measure the quality
of (h̄ j,r j, t̄ j). Different from standard NSCaching, we
use α3 = 0,α2 > 0 and N2 = maxi

(
|S̄i|

)
so that the

content in cache Ci is similar as that in Ni of KBGAN.

Table 5: A unified view of the proposed method and the
existing methods. “-” means not care.

hyper-
Bernoulli [56]

KBGAN [11] /
IGAN [54]

parameters Self-Adv [48]
α1 0 0 0
α2 0 > 0 > 0
α3 0 0 -
N1 - - maxi

(
|S̄i|

)
N2 - maxi

(
|S̄i|

)
0

Self-Adv [48] uses in the similar approach as KBGAN.
Differently, Self-Adv uses the model’s embedding itself
to measure the quality of negative samples in Ni. Com-
pared with KBGAN and Self-Adv, NSCaching improves
upon them by controlling the quality of negative triplets
in Ni.

– IGAN [54]: When N1 = maxi
(
|S̄i|

)
and N2 = 0,

NSCaching resembles IGAN. In IGAN, the generator
chooses large-gradient negative samples from the entire
candidate set S̄i. Thus, we can set the cache size to be
maxi

(
|S̄i|

)
, and mask the positive positions. Besides,

the cache does not need to be updated by setting N2 =

0. We use α2 > 0 to select large-gradient negative
samples from cache to replace the generator. In this
way, NSCaching can also approximate the sampling
procedure in IGAN.

We show the values of α’s and N’s in Table 5 about how
to cover the baselines by NSCaching. This finding also
explains why NSCaching (auto) is better than the baselines.
Besides, comparing with Bernoulli, KBGAN, IGAN and
Self-Adv, NSCaching (auto) adapts the sampling distri-
bution to approximate a relatively unbiased estimator for
specific tasks.

3.5 Understanding the false negative triplets.

Since KG is incomplete [55], there exist triplets that do not
appear in the training set but are not necessarily false. For

12 Yongqi Zhang et al.

example, the triplets in the valid or test set can be viewed
as false negative triplets during training. From the literature
[33,55,59], the false negative samples will have larger scores
but lower variance than the large-gradient negative samples.
We also have such an observation in Section 5.5.3. Thus,
the false negative triplets may be detected by tracing the
variance during the training. However, since the number of
false negative triplets is small and evaluating the variance is
expensive, we show in Section 5.5.3 that false negatives are
empirically not a concern.

4 Extension to Skip-gram Model

The skip-gram model [36] is a popular method originat-
ing from word embedding, which can explore surrounding
words given the current embedded one. Due to its superior
performance in natural language processing, two represen-
tative methods Deepwalk [44] and Node2vec [21] adopt
the skip-gram model for graph embedding. And they have
achieved significant improvements over previous works on
the embedding quality [10]. Moreover, motivated by the
success of the skip-gram model on the graph and word em-
bedding [21,36,37,44], we extend the NSCaching algorithm
to the skip-gram model here. We first introduce the skip-
gram model [36] in Section 4.1. Then, we adapt the cache-
based negative sampling algorithm to the skip-gram model
for graph embedding in Section 4.2. In this way, we show
that the NSCaching algorithm (Algorithm 2) is not limited
to KG embeddings.

4.1 Negative Sampling in Skip-gram Model

Skip-gram model is originally used to learn word em-
beddings [36]. It aims at maximizing the co-occurrence
probability among the words that appear within a window
W . Given a positive word u, the training objective in skip-
gram model is to learn word embeddings that are good at
predicting the words v ∈ Wu, where Wu is a set of nearby
or context words of u. More formally, for a sequence of
training words u1,u2, . . . ,uL with length L, the objective is
to maximize the average log probability

1
L ∑

L
i=1 ∑v j∈Wui

log p(v j|ui) , (14)

where Wui = {v j| − c ≤ j ≤ c, j 6= 0}, c is a pre-defined
window size. Basically, the probability p(v j|ui) is defined
as the softmax function

p(v j|ui) = exp(v>j ui)/∑
|V |
k=1 exp(v>k ui), (15)

where the boldface represents the embedding and |V | is the
vocabulary size. However, since |V | is usually large, neg-
ative sampling is used to avoid computing the dot product

similarity among all the words [37]. In this way, the log
probability log p(v j|ui) is computed based on

logσ(v>j ui)+∑
N
n=1 logσ(−v>n ui), (16)

where σ(x) = 1/1+exp(−x) is the sigmoid function and vn’s
are the negative samples drawn from the noise distribu-
tion p(ui). Generally, the noise distribution p(ui) is a un-
igram distribution, or a weighted distribution proportional
to the word frequency [37]. Similar as the methods in
Section 2.2.1, the negative sampling used for (16) is also
fixed. Hence, the quality of negative samples cannot be
dynamically captured.

4.2 Graph Embedding with Skip-gram Model

In order to preserve the graph structure while make it easy
for a machine learning model to process, random walks are
widely used to learn graph embeddings [10,21,44]. A graph
is firstly represented as a set of random walk paths sampled
from it. Then skip-gram model [36] is applied to preserve
graph properties carried by the paths [10].

DeepWalk [44], as a representative random walk based
graph embedding model, first samples a set of paths from
the input graph. Then, the sampled paths are regarded
as sentences that describe the graph, and the nodes are
regarded as words. Skip-gram model is applied on the paths
to maximize the probability of observing a node’s neigh-
borhood conditioned on its embedding. In this way, nodes
with similar neighborhoods will have larger co-occurrence
and more similar embeddings. Node2vec [21] improves
upon DeepWalk [44] by using a biased random walk. Two
parameters p and q are used to control breadth-first sampling
or depth-first sampling, which is shown to better capture the
local topologies [21].

Different from KG, skip-gram model does not have
exact positive samples since the context in the window
Wui = {v j|− c ≤ j ≤ c, j 6= 0} does not necessarily to have
strong connection with ui. Therefore, we build a cache Ci
for each word rather than each training sample. Then, the
negative part in (16) is sampled from the cache. We treat the
number of negative samples N as a hyper-parameter and op-
timize it together with the cache-related hyper-parameters.
In addition, we use all the nodes that are not in Wui as the
negative samples. Therefore, balancing between E&E is also
important in this setting.

We use the Node2vec [21] model as the testbed for skip-
gram model. In Node2vec, a biased random walk method
is used to generate a sequence of walks from the graph. In
this way, embeddings are updated through the cache-based
skip-gram algorithm. The cache-based Node2vec method is
given in Algorithm 6.

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 13

Algorithm 6 Node2vec (NSCaching).
Require: Graph G = (V,E), embedding dimension d, walks per node

r, walk length l, window size w, p, q.
1: Initialize embeddings for each node v ∈V .
2: computing the neighborhood sampling probability of each node

based on p and q;
3: Initialize walks to empty
4: for i = 1, · · · ,r do
5: for all nodes v ∈V do
6: sample a walk starting from u with length l;
7: append walk to walks.
8: end for
9: end for

10: repeat
11: sample a node ui and its context v j in the window Wui .
12: sample a set of negative nodes v̄n’s from the cache Ci.
13: update embedding using the gradient of (16).
14: until converge

5 Experiments

In this section, we conduct empirical study of our method.
All algorithms are written in Python with PyTorch frame-
work [43] and run on a TITAN Xp GPU with 12GB memory.
Our code is public available in xxx.

5.1 Implementation Details

Since a lot of triplets share the same (head, relation) or
(relation, tail) pairs, we use two caches, namely a head
cache H(r,t) and a tail cache T(h,r), to separately store
negative triplets in {(h̄,r, t) /∈ S |h̄ ∈ E } and {(h,r, t̄) /∈
S |t̄ ∈ E }. Using two caches instead of one can help us
to reduce the time and space cost. The value we stored in
cache is the score of negative triplets according to the pre-
defined scoring function f , instead of gradient norms. The
main consideration is that gradient norms for each training
pair can not be efficiently obtained through mini-batches,
especially for complex scoring functions like TransD [25].
Given a positive triplet (hi,ri, ti), the value pi is computed
by the sum of scores stored in H(r,t) and T(h,r).

In general, the training of KG embedding model is under
the open world assumption, which means that KGs contain
only positive triplets and non-observed triplets can be either
false or just missing [55]. To reduce sampling the negative
examples that are just missing, we use the same scheme
proposed in Bernoulli sampling [56] to get the subset Ni.
Specifically, different probabilities are given when replacing
the head or the tail for different relations. For each relation
r, we compute and denote the average number of tail entities
per head as t ph, and the average number of head entities per
tail as hpt. Then the probabilities of replacing the head and
the tail are t ph/t ph+hpt and hpt/t ph+hpt respectively.

To constrain values of α’s in a certain range, we rescale
the value of pi, c(i)j and gi to lie in the interval [0,1] before

computing the sampling probability σ(ai;a). Specifically,
given the vector a and let qlow and qhigh be the quantiles of
a, we choose qlow to be 20th and qhigh to be 80th percentiles,
respectively. Then the rescaling function r(ai) is formed as:

r(ai) =


1 ai > qhigh

0 ai < qlow

ai−qlow

qhigh−qlow otherwise

. (17)

The rescaling function can also help us to avoid the case that
some samples have extremely large score. In this case, these
samples will be selected for too many times.

5.2 Experiment Setup

Five datasets are used here, i.e., WN18, FB15K and their
variants WN18RR, FB15K237, and YAGO3-10. WN18 and
FB15K are firstly introduced in [8]. They are widely tested
in the literature [8, 11, 25, 27, 51, 54, 69]. WN18RR [13]
and FB15K237 [50] are variants that remove near-duplicate
or inverse-duplicate relations from WN18 and FB15K. The
two variants are harder and more realistic. YAGO3-10 is
much larger than the others and is a subset of YAGO [47].
Their statistics are shown in Table 6.

Table 6: Detailed information of the datasets used in KG
embedding experiments.

Dataset #entity #relation #train #valid #test
WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134
FB15K 14,951 1,345 484,142 50,000 59,071

FB15K237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,188 37 1,079,040 5,000 5,000

Following previous KG embedding works [8, 25, 51, 56]
and the GAN-based works [11, 54], we mainly test the
performance on link prediction task. This is also the testbed
to measure KG embedding models. Link prediction aims
to predict the missing entity h or t for a positive triplet
(h,r, t). In this task, we measure the rank of head entity
h and tail entity t among all the entities in E . Thus,
link prediction emphasizes the rank of the correct entities
rather than their concrete scores. Besides, to further verify
the quality of the learned embedding, we test the learned
embeddings on triplet classification task. This task is to
confirm whether a given triplet (h,r, t) is correct or not, i.e.,
binary classification of triplet [56]. In practice, it can help us
to quickly answer the truth-or-false questions.

14 Yongqi Zhang et al.

As in previous works [8, 11, 27, 51, 54], we evaluate
the link prediction performance based on the following two
metrics 1:

– Mean reciprocal ranking (MRR): It is computed by the
average of the reciprocal ranks 1/|S |∑|S |i=1

1
ranki

where
ranki, i ∈ {1, . . . , |S |} is a set of ranking results;

– Hit@10: The percentage of appearance in the top-10
ranking: 1/|S |∑|S |i=1 I(ranki ≤ 10), where I(·) is the
indicator function;

MRR and Hit@10 measure the top rankings of positive
entity in different levels. Hit@10 cares about general top
rankings while the top 1 samples contribute most to MRR.
The larger value of MRR and Hit@10 indicates better
performance. To avoid underestimating the performance of
different models, we report the performance in a “filtered”
setting, i.e., all the corrupted triplets that exist in train,
valid and test set are filtered out [11, 54]. A large amount
of scoring functions have been proposed in the literature,
please see a recent survey [55] for a review. In this part,
following [11, 54], TransE [8], TransH [56], TransD [25],
DistMult [60] and ComplEx [51] will be used as scoring
functions for comparison; besides, the recently developed
scoring function SimplE [27] is also included (see Table 2).

5.3 Comparison with State-of-the-arts

In this section, we focus on the comparison between our
proposed cache-based negative sampling with the other
baseline sampling methods.

5.3.1 Compared Methods

Following methods for negative sampling in KG embedding
are compared:

– Bernoulli [56]: As an extension of the uniform sampling
scheme used in TransE, Bernoulli sampling controls
the probability for sampling (h̄,r, t) or (h,r, t̄) in the
one-to-many, many-to-one and many-to-many relations.
Specifically, it samples (h̄,r, t) or (h,r, t̄) under a fixed
Bernoulli distribution for each r.

– KBGAN [11]2: This method firstly samples a set N
uniformly from the whole entity set E . Then the head
or tail entity is replaced with the entities in N to form
a set of candidate (h̄,r, t) and (h,r, t̄). The generator
in KBGAN tries to pick up one triplet among them.
As proposed in [11], we choose the simplest model
TransE as the generator. For a fair comparison, the size

1 The mean rank (MR) metric, which is given in the conference
version [69], is removed in the journal version since (i) space is limited.
and (ii) the mean rank is easily influenced by low ranking samples.

2 https://github.com/cai-lw/KBGAN

of set N is the same as our cache size N1. We use
the published code and change the configure same as
ours in the comparison. Self-Adv [48] works similarly
as KBGAN. The main difference is that Self-Adv uses
the target embedding model itself as the generator.

– NSCaching (Algorithm 2): As in Section 3 and 5.1,
the negative triplets are formed by replacing the head
entity h or tail entity t with the one sampled from head-
cache H or tail-cache T . The cache is updated as in
Algorithm 4. Note that we can also lazily update the
cache several iterations later to save time. We use n = 0
without lazy-update unless otherwise specified. Besides,
we use AutoML to denote the improved version which
tunes the hyper-parameters to balance E&E.

As the source code of IGAN [54] is not available, we
do not compare with it here. Instead, we directly use the
reported performance in the sequel. Finally, we also use
Bernoulli sampling to choose between (h̄,r, t) and (h,r, t̄)
for KBGAN and NSCaching. Besides, as in [11, 54], two
strategies are used for KBGAN and NSCaching:

– Scratch: The embedding of relations and entities are
initialized by the Xavier uniform initializer [19], and the
models (denoted as KBGAN + scratch and NSCaching
+ scratch) are directly applied to train the given KG;

– Pretrain: Same as [11, 54], we firstly pretrain each scor-
ing function with Bernoulli sampling, several epochs on
the data sets. We denote it as pretrained. Then the ob-
tained parameters are used to warm-start the given KG.
We keep training the warm-started KG embedding and
evaluate the performance under different sampling meth-
ods, i.e., Bernoulli, KBGAN + pretrain and NSCaching
+ pretrain. Besides, the generator in KBGAN is warm-
started with corresponding TransE model.

Same as the KG embedding works in the literature
[8, 26, 27], we use grid search to select the KG embedding
related hyper-parameters: hidden dimension d ∈ {50, 100,
200}, batch size m ∈ {1024, 2048, 4096}, learning rate
η ∈ {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}. For
translational distance models, we tune the margin value
γ ∈ {1, 2, 3, 4}. And for semantic matching models, we tune
the penalty value λ ∈ {0.001, 0.01, 0.1} [51]. We use Adam
[28], which is a popular variant of SGD algorithm for the
training, and adopt its default settings except for the learning
rate. The best hyper-parameters are tuned under Bernoulli
sampling scheme and evaluated by the MRR metric on the
valid set. We keep them fixed for the baselines Bernoulli,
KBGAN and NSCaching here. Following [11], we save and
record the pretrained model after initial training epochs.
Then, Bernoulli method keeps training until 3000 epochs;
and the results of KBGAN and NSCaching algorithm are
evaluated within 1000 epochs, either from scratch or with
pretraining. All the recorded results are tested based on

https://github.com/cai-lw/KBGAN

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 15

Table 7: Comparison of various algorithms on the five data sets. Performance of the pretrained model is included as reference.
As code of IGAN is not available, its performance is directly copied from [54]. Note that MRR, and those on WN18RR,
FB15K237, YAGO3-10 data sets are not reported as they are not shown in IGAN. Besides, KBGAN on YAGO3-10 is not
reported since it easily runs out of memory. Bold number means the best performance, and underline means the second best
under each setting.

scoring Dataset WN18 WN18RR FB15K FB15K237 YAGO3-10
functions Metrics MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

TransE

pretrained 0.4213 91.50 0.1753 44.48 0.4679 74.70 0.2262 38.64 0.1723 32.24
Bernoulli 0.5001 94.13 0.1784 45.09 0.4951 77.37 0.2556 41.89 0.2053 37.87

KBGAN pretrain 0.6880 94.92 0.1864 45.39 0.4858 77.02 0.2938 46.69 —— ——
scratch 0.6606 94.80 0.1808 43.24 0.3771 72.67 0.2926 46.59 —— ——

NSCaching pretrain 0.7867 94.92 0.2048 47.38 0.6475 81.54 0.3004 47.36 0.3065 51.36
scratch 0.7818 94.63 0.2002 47.83 0.6391 80.95 0.2993 47.64 0.3074 50.65

IGAN* pretrain —— 91.3 —— —— —— 74.0 —— —— —— ——
scratch —— 92.7 —— —— —— 73.1 —— —— —— ——

TransH

pretrained 0.4527 92.71 0.1755 43.30 0.4316 73.98 0.2222 38.80 0.1444 29.70
Bernoulli 0.5206 94.52 0.1862 45.09 0.4518 76.55 0.2329 40.10 0.1783 35.35

KBGAN pretrain 0.6168 94.84 0.1923 45.31 0.4262 75.91 0.2807 46.39 —— ——
scratch 0.6018 94.60 0.1869 44.81 0.3364 72.53 0.2779 46.19 —— ——

NSCaching pretrain 0.8063 95.32 0.2038 48.04 0.6520 81.96 0.2812 46.48 0.2988 50.82
scratch 0.8038 95.29 0.2041 48.04 0.6391 81.05 0.2832 46.59 0.3013 51.07

IGAN* pretrain —— 94.0 —— —— —— 77.0 —— —— —— ——
scratch —— 86.9 —— —— —— 73.3 —— —— —— ——

TransD

pretrained 0.4426 92.69 0.1782 42.18 0.4320 73.98 0.2244 39.53 0.1571 31.95
Bernoulli 0.5093 94.61 0.1901 46.41 0.4529 76.55 0.2451 42.89 0.2014 38.61

KBGAN pretrain 0.6130 94.92 0.1917 46.49 0.4069 74.27 0.2487 44.33 —— ——
scratch 0.5950 94.68 0.1875 46.41 0.3151 69.77 0.2465 44.40 —— ——

NSCaching pretrain 0.8022 94.99 0.2013 48.36 0.6567 82.02 0.2883 48.33 0.3180 53.05
scratch 0.7994 95.16 0.2013 48.39 0.6415 81.32 0.2863 47.85 0.3146 52.65

IGAN* pretrain —— 93.3 —— —— —— 77.6 —— —— —— ——
scratch —— 93.0 —— —— —— 74.0 —— —— —— ——

DistMult

pretrained 0.6340 92.28 0.3765 44.85 0.4985 78.28 0.2247 36.03 0.2805 48.81
Bernoulli 0.7918 93.38 0.3964 45.25 0.5376 78.69 0.2491 42.03 —— ——

KBGAN pretrain 0.6955 93.11 0.3849 44.32 0.5568 75.57 0.2670 45.34 0.3262 54.58
scratch 0.7275 93.08 0.2039 29.52 0.4227 64.35 0.2272 39.91 —— ——

NSCaching pretrain 0.8297 93.83 0.4148 45.80 0.7447 84.16 0.2882 45.79 0.4112 57.24
scratch 0.8306 93.74 0.4128 45.45 0.7448 83.91 0.2834 45.56 0.4032 56.58

ComplEx

pretrained 0.8046 93.75 0.3934 41.63 0.5191 78.02 0.2201 35.55 0.3008 49.94
Bernoulli 0.9115 94.39 0.4431 51.77 0.6253 80.72 0.2596 43.54 0.3568 54.67

KBGAN pretrain 0.8976 93.73 0.4287 47.03 0.6254 80.95 0.2818 45.37 —— ——
scratch 0.7233 85.81 0.3180 35.51 0.5002 76.10 0.1910 32.07 —— ——

NSCaching pretrain 0.9326 94.03 0.4487 51.76 0.7994 86.32 0.3017 47.75 0.4020 56.50
scratch 0.9355 93.98 0.4463 50.89 0.7995 86.28 0.3021 48.05 0.4045 57.79

SimplE

pretrained 0.9056 94.34 0.3989 46.09 0.5684 79.62 0.2355 35.71 0.3405 55.46
Bernoulli 0.9300 94.40 0.4256 46.90 0.6704 81.47 0.2388 36.80 0.3614 56.90

KBGAN pretrain 0.9335 94.69 0.4331 47.64 0.7692 85.76 0.2454 40.32 —— ——
scratch 0.9258 94.76 0.4126 46.43 0.4737 66.44 0.2278 35.94 —— ——

NSCaching pretrain 0.9412 94.71 0.4352 48.01 0.8033 86.90 0.2711 43.88 0.4211 59.77
scratch 0.9415 94.76 0.4361 47.67 0.8026 86.86 0.2718 43.88 0.4193 56.47

auto 0.9446 94.98 0.4388 48.36 0.8148 88.47 0.2966 46.22 0.4532 61.84

the best hyper-parameters chosen by the MRR value on
valid set. For cache related hyper-parameters, we choose
α1 = α2 = 0,α3 = 1 and N1 = N2 = 50 for NSCaching.

5.3.2 Results on Translational Distance Models

The performance on link prediction task is compared in
Table 7. First, we can see that, for the translational distance
models (TransE, TransH, TransD), KBGAN, NSCaching and

IGAN (both pretrain and scratch) gain significant improve-
ments upon the baseline scheme Bernoulli, especially for the
performance gaining on the MRR metric, which is mainly
influenced by the top rankings. This verifies the advantages
of using large-gradient negative triplets during negative
sampling and these methods can effectively pick up these
negative triplets.

Then, IGAN and KBGAN with pretraining can perform
better, indicated by MRR and Hit@10, than from scratch.

16 Yongqi Zhang et al.

(a) WN18. (b) WN18RR. (c) FB15K. (d) FB15K237.

(e) WN18. (f) WN18RR. (g) FB15K. (h) FB15K237.

Fig. 4: Testing performance v.s. clock time (in seconds) based on TransD (best viewed in color).

(a) WN18. (b) WN18RR. (c) FB15K. (d) FB15K237.

(e) WN18. (f) WN18RR. (g) FB15K. (h) FB15K237.

Fig. 5: Testing performance v.s. clock time (in seconds) based on SimplE (best viewed in color).

This shows that pretraining is helpful for the GAN-based
methods. In comparison, NSCaching trained from either
state (pretrain or scratch) can outperform IGAN and KB-
GAN on all the scoring functions.

The learning curve of the testing performance for vari-
ous algorithms is shown in Figure 4. We use TransD here
as the testbed. As can be seen, all algorithms will converge
to some points with stable testing performance, which
empirically verifies the convergence of Adam optimizer
[28]. Then, pretrain is a must for KBGAN to achieve good
performance. When the generator is trained from scratch,

the whole model will suffer from instability, especially at the
initial training stages. As a result, it prevents the GAN-based
models converging to some good local points. NSCaching
can obtain good performance either from scratch or with
pretrain. Note that, even through the updating and sampling
scheme introduces extra training cost, we can achieve bet-
ter performance with fewer iterations. As a result, in all
cases, NSCaching has better anytime performance than both
Bernoulli and KBGAN.

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 17

5.3.3 Results on Semantic Matching Models

The performance on semantic matching models is shown
in the bottom rows of Table 7. Same as that on trans-
lational distance models, NSCaching outperforms baseline
scheme Bernoulli significantly as indicated by the bold
and underline numbers. However, KBGAN does not show
a consistent performance. In most settings, KBGAN from
scratch performs even worse than Bernoulli. This obser-
vation further verifies the fact that GAN-based methods
usually suffer from instability and degeneracy. They need
careful balance between the generator and the discriminator,
i.e., the target KG embedding model. However, NSCaching
works consistently and performs the best both with pretrain
or from scratch.

The learning curve of the testing performance for var-
ious algorithms is shown in Figure 5. SimplE is used in
this part. As can be seen, both Bernoulli and NSCaching
will converge to some stable points. In the contrast, KBGAN
will turn down and overfit on FB15K237 data set. However,
NSCaching, either with pretrain or from scratch, leads the
performance and is well adopted on the semantic matching
models without further tuning. Besides, as for NSCaching
(auto), we find that even though the sampling cost is higher,
the performance improvement is obvious and consistent on
all these data sets.

5.3.4 Results on Triplets Classification

We do triplets classification in the same way as [56].
This task is to confirm whether a given triplet (h,r, t) is
correct or not, i.e., do binary classification on the triplet.
Compared with link prediction, triplets classification is more
convenient in answering yes-or-no questions. The decision
rule of classification is learned as follows: for each (h,r, t),
if its score is no less than the relation-specific threshold σr,
then we predict it to be positive. Otherwise, negative. The
threshold σr is determined by maximizing the classification
accuracy on the valid set. We test this task on WN18RR
and FB15K237 data sets based on TransD and SimplE.
As shown in Table 8, NSCaching still outperforms various
baselines. This task further justifies that NSCaching can help
learn a better embedding of the KG.

5.4 Balancing E&E

In this part, we analyze the designing concerns on the
hyper-parameters regarding “exploration and exploitation”
in Table 4. SimplE and WN18RR are used as the scoring
function and data set respectively.

Table 8: Comparison of various algorithms on triplet classi-
fication task. Bold number indicates the best performance.

model Dataset WN18RR FB15K237

TransD

Bernoulli 86.81 78.24
KBGAN pretrained 85.93 79.03

scratch 86.01 79.05
NSCaching pretrained 87.84 80.63

scratch 87.64 80.69

SimplE

Bernoulli 84.48 77.64
KBGAN pretrained 79.87 74.11

scratch 71.73 72.61
NSCaching pretrained 84.96 79.88

scratch 84.83 80.21

5.4.1 α1: Sampling positive triplet

Given a set of training triplets and the cache, how to sample
the positive triplet is the first question we care about. In Al-
gorithm 3, the most related hyper-parameters are α1, which
controls the distribution of positive samples in cache C , and
α3, which controls the content in the indexed cache Ci. The
testing performance with different values of α1 is compared
in Figure 6(a). Since the content in cache is influenced by
α3, we use 0 (low), 1 (middle), and 100 (high) as values
of α3 for the testing. As can be seen, when α3 is small,
different choices of α1 perform relatively bad and does not
have regular influence on embedding performance. As α3
becomes larger, we see that a larger value of α1 performs
better, which verifies the better convergence property in
Theorem 1. However, it will decrease with too large α1. Take
the distribution in Figure 3(c) as an example, some positive
triplets will not be selected when α1 is too large, leading to
a problematic training process.

5.4.2 α2 and α3: Sampling and updating cache

Once a positive triplet (hi,ri, ti) is sampled, we can get its
corresponding cache Ci which stores the negative triplets.
The main parameters influencing the choice of negative
triples are α2 and α3, namely the temperature for sampling
from cache and updating the cache. To show how α2 and α3
balance E&E, we fix α3 in certain ranges (low: 0, middle: 1
and high: 100) and change α2 in Figure 6(b), and then do it
alternatively in Figure 6(c).

From both Figure 6(b) and 6(c), we can see that bal-
ancing α2 and α3 are of vital importance. When α2 or α3
has small value, increasing the other one will improve the
performance since exploitation is limited at this stage. How-
ever, when α2 or α3 becomes larger, the other one should
choose an appropriate value in order to avoid exploiting too
much. The performance goes up at initial stage and turns
down as the break up of balance. The reason is that too large
values of α2 and α3 will limit exploration such that a few
negative triplets will be selected too many times. Besides,

18 Yongqi Zhang et al.

(a) Impact of α1 (given α3). (b) Impact of α2 (given α3). (c) Impact of α3 (given α2).

Fig. 6: Balancing on exploration and exploitation with different values of α1, α2 and α3 with SimplE on WN18RR.

Table 9: Searching range of hyper-parameters and searched best value for different data sets.

hyper-parameters ranges
best searched

WN18 WN18RR FB15K FB15K237 YAGO3-10
α1 [0, 1] 0.0668 0.013 0.0069 0 6.7e-4
α2 [0, 100] 3.463 0 0 3.122 16.62
α3 [0, 100] 24.25 2.759 1.848 2.579 0.2228
N1 {10,30, . . . ,90} 70 90 30 70 70
N2 {10,30, . . . ,90} 70 50 10 70 70

false negative triplets will be more frequently sampled.
Fortunately, E&E is well balanced under a wide range of
α’s values where NSCaching performs well without much
effort in tuning α’s.

Besides, when the cache is updated without referring
to the gradient norms, i.e. α3 = 0 and α2 > 0, NSCaching
works as an alternative version of KBGAN and outperforms
Bernoulli baseline approach. It works stabler than KBGAN
which suffers from the instable training of the generator.
However, the performance is still not the best since balance
of E&E is not in the best state when cache is updated without
considering the negative triplets’ qualities.

5.4.3 N1 and N2: Cache size

Basically, N1 is the size of cache Ci. Then, N2 is the size of
randomly sampled subset Ri of negative triplets from S̄i,
which will later be used to update the cache. In this part,
we show their impact on the performance of NSCaching.
The three temperature values are set as α1 = α2 = 0,α3 = 1.
Figure 7(a) shows how performance changes by varying the
cache size N1 among {10,30,50,70,90}with fixed N2 = 50.
When the cache size is small, average quality of triplets
stored in the cache should be larger than those in a cache
with larger size. As a result, false negative triplets will
be more likely to be sampled, which will influence the
embedding quality. With the others values of N1, NSCaching
performs quite stable. The convergence speed is similar, as
well as the values in converged state. Thus, when we need to
set appropriate cache size, the value of N1 can be searched

from smaller values to larger ones until the performance is
stable.

Different performance of the random candidate subset
size N2 is shown in Figure 7(b). The entities in cache will
be updated more frequently when N2 gets larger, which lead
to better exploration. But the trade-off is that larger value
of N2 is more expensive. As shown by the colored lines in
Figure 7(b), NSCaching performs consistently when N2 is
larger than 10. However, if the random subset is small, the
content in cache will be harder to be updated, thus leading
to poor performance as the yellow dashed line (N2 = 10).

(a) Diff. N1. (b) Diff. N2.

Fig. 7: Comparison of different N1 when random subset size
N2 is fixed to 50, and different N2 when cache size N1 is
fixed to 50. Evaluated by SimplE model on WN18RR (best
viewed in color).

By combining together the influence of cache size N1
and the random subset size N2 in Figure 7, we find that (i)

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 19

NSCaching is not sensitive to the two sizes; (ii) both sizes
can not be too small; (iii) N1 = N2 is a good balance.

5.4.4 Automatically Balancing E&E

In previous part, we have shown the importance of balancing
between E&E. Here, we use AutoML techniques [61] to
automatically balance E&E and further improve the perfor-
mance on five benchmarks.

For each dataset, we use the same value of learning rate,
batch size, embedding dimension and regularizer penalty as
the Bernoulli baseline to make a fair comparison. The other
hyper-parameters related to the negative sampling algorithm
are searched within the ranges given in Table 9 by SMAC
[23], a well-known AutoML algorithm for hyper-parameter
optimization. The initial hyper-parameter setting is α1 =

α2 = α3 = 0 and N1 = N2 = 50, namely a setting similar
to Bernoulli sampling. Besides, we take random search [5]
as a baseline rather than the grid search, as random search is
generally more effective [5].

Figure 8 shows the MRR from the best (denoted by
“top1”) and top three (denoted as “top3”) models ob-
tained during the search procedure. Once the searching
starts, the top performance will soon be boosted for both
SMAC and random by exploring hyper-parameters with
better balance of E&E. Both of the two search algo-
rithms find hyper-parameters that outperform the original
NSCaching+scratch. However, with the help of Bayesian
optimization, SMAC is more efficient and effective than
random. This verifies the importance of introducing Au-
toML into the framework of NSCaching. After searching
and running for 50 hyper-parameter settings, we show the
performance of the best hyper-parameter on testing data
in Table 7. The hyper-parameter settings with best perfor-
mance are given in Table 9.

(a) WN18RR. (b) FB15K237.

Fig. 8: Performance comparison of SMAC and random
search (top1 and top3 average). x-axis is number of running
times for different hyper-parameter. y-axis is the mean MRR
on validation set. The MRR peformance of NSCaching is
given as the black-dashed line for a reference (best viewed
in color).

5.5 Ablation study

5.5.1 Lazy update

In Section 3, we have introduced the lazy update parameter
n to reduce the computation cost of NSCaching. In this
part, we analyze the influence of n on the learning curve
in Figure 9. We run each model for 1,000 epochs, and
report the best performance and running time. The relative
time and MRR are divided by the corresponding values
of n = 0 respectively. When n increases, the computation
cost is reduced since less update operations are conducted.
However, the performance is gradually decreasing since
the cache will be less frequently updated, reducing the
exploration. Fortunately, the decrease of performance is not
obvious (less than 3%) when n≤ 10. So the value of n can be
regarded as a trade-off for time and performance, adapting
to different application requirements.

Fig. 9: Influence of different lazy update value n of
NSCaching (SimplE is used as the testbed).

5.5.2 Comparing with Self-adv

In this part, we compare NSCaching with the concurrent
work Self-Adv by using the RotatE scoring function [48]:
f (h,r, t) = −‖h ◦ r− t‖1, where h,r, t are complex embed-
dings and ◦ is the Hadmard product in the complex space.

As discussed in Section 5.3.1, Self-Adv relies on sam-
pling a small subset N from Ei and then sampling from N .
A similar setting in NSCaching is when α3 = 0, where the
cache is updated without depending on the scores so that the
cache can have the same distribution with Rm. As shown
in Figure 10, both Self-Adv and NSCaching outperform
Bernoulli sampling. This again demonstrates the univer-
sality of using large-gradient negative samples to improve
the performance. Then, Self-Adv and NSCaching (α3 = 0)
have the similar best performance, but NSCaching (α3 = 0)
is a bit slower due to the updating procedure. Besides,
NSCaching (auto) achieves the best performance by using
the cache Ci, which has more large-gradient samples than
N in Self-Adv.

20 Yongqi Zhang et al.

(a) WN18RR. (b) FB15K237.

Fig. 10: Learning curve of different negative sampling
method on RotatE.

5.5.3 Influence of false negatives

In Section 3.5, we show that variance can be used as
a standard to detect the false negatives. In this part, we
empirically analyze the potential influence of introducing
variance into the sampling method with SimplE model and
WN18RR data set. We use the valid and test set here as the
set of false negative samples.

First, we analyze the possibility of sampling the false
negative triplets from the cache. In Figure 11(a), we show
the ratio of false negative triplets in the cache (denoted as
cache) and the percentage of false negatives in the sam-
pled negative triplets (denoted as sampled) during training.
The cache does contain a few false negative triplets, but
less than 0.03% contents are false negative. The ratio of
false negatives among the sampled triplets is even smaller.
Besides, we set N1 = N2 and use different values to show
how the cache size influences the ratio of false negative
triplets. When the cache size N1 increases, the possibility of
sampling the false negative triplets decreases. Since in each
iteration, only one negative triplet is generated and the cache
keeps updating, we can avoid frequently picking up the false
negative samples.

(a) Ratio of FN in the cache. (b) Average variance.

Fig. 11: Understanding false negative (FN) triplets with
SimplE on WN18RR.

Second, we show that variance can be used as a standard
to detect false negatives. In Figure 11(b), we plot the average

variance of 5,000 false negative triplets and 5,000 large-
gradient negative triplets. The false negative triplets are
sampled from the valid and test set. For the large-gradient
negative triplets, we run NSCaching for 1,000 epochs first
and then sample 5,000 triplets, which are not false negative,
from the final cache. The scores of triplets are estimated
per epoch, and the variances are computed based on the
recorded scores. As shown in Figure 11(b), the variance of
large-gradient negative samples is larger than that of false
negative ones. This indicates that the false negative triplets
may be detected by tracing the variance during training.

Fig. 12: Adding variance with different γ with SimplE on
WN18RR.

Finally, we show the influence of adding variance into
the sampling method. We record the score measured by
SimplE and std of the scores for the negative samples. To
save the memory cost, we use the Welford’s online algo-
rithm [57] to estimate the std of negative triplets. Then, we
use score+νstd, where ν > 0 is a weighting parameter, as
the metric here to sample the large-gradient negative triplets.
As shown in Figure 12, when ν is given an appropriate
value like ν ≤ 1, the best performance is almost the same,
but the computation cost increases a lot. The training will
be instable after adding the std term, especially when the
value of ν is large. Therefore, it is not necessary to consider
the variance to reduce the problem of false negative triplets
in this work. Instead, we control α’s to avoid frequently
sampling the false negative triplets.

5.6 Theoretical Explanation

Here, we study the theoretical perspective of the proposed
approach, which gives more insights and helps us under-
stand NSCaching better.

5.6.1 Illustration of Vanishing Gradients

To further clarity the vanishing gradient problem, we plot
the average `2-norm of gradients v.s. number of epochs in
Figure 13. Adam [28], a stochastic gradient descent algo-
rithm, is used as the optimizer. First, we can see that while
the norms of gradients for both NSCaching and Bernoulli

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 21

become smaller, they will not decrease to zero since the
sampling process of the mini-batch will introduce noise into
gradients. However, the norm from NSCaching is larger than
that from Bernoulli due to the usage of cache-based negative
sampling scheme. Thus, we can see NSCaching can suc-
cessfully avoid the problem of vanishing gradient. We also
show the changes with different α’s. When the value of α’s
increases, the gradient norm will become larger, especially
after the warm-up procedure, i.e., after 400 epochs. For the
TransD model, when α2=α3=10, the training will become
unstable. This also verifies that we should control the value
of α through the AutoML technique.

(a) TransD. (b) SimplE.

Fig. 13: Average `2-norm of gradients within a mini-batch
v.s. number of epochs for Bernoulli and NSCaching on
WN18RR.

(a) WN18RR. (b) FB15K237.

Fig. 14: Average training loss in one epoch v.s. number of
epochs for Bernoulli and NSCaching.

5.6.2 Convex Case: Faster convergence

To demonstrate the faster convergence illustrated in Theo-
rem 1, we use TransE as the scoring function and use classi-
fication loss in (2) for KG embedding. As mentioned in Sec-
tion 3.3.1, this does not fall into any existing KG embedding
models, but it satisfies assumptions in Theorem 1. Thus, it
is a good synthetic model to be studied. We use the same
hyper-parameters identified for NSCaching in Section 5.3,
and compare it with Bernoulli scheme. FB15K237 and

WN18RR are considered here. The comparison of average
training loss per epoch v.s. epoch between NSCaching and
Bernoulli is shown in Figure 14. As we can see, NSCaching
indeed leads to faster convergence than Bernoulli, which is
explained by Theorem 1.

5.6.3 Nonconvex Case: Self-paced learning

Finally, we visualize the changes of content in the cache,
which verifies the effects of self-paced learning introduced
in Section 3.3.2. Following [54], we also use FB13 here,
which has 75,043 entities, 13 relations and 316,232 training
triplets, since triplets in this dataset are more interpretable
than the five evaluated datasets. We pick up (manorama,
pro f ession, actor) as the positive triplet, and the changes
in its tail-cache Tr,t are shown in Table 10. As can be
seen, negative tails are firstly meaningless, e.g., ostrava and
ben lilly, then they gradually changes to human jobs, e.g.,
artist and sex worker.

Table 10: Examples of negative entities in cache on FB13.
Each line displays 5 random sampled negative entities from
tail-cache of a positive fact (manorama, profession, actor)
in different epochs.

epoch entities in cache
0 allen clarke, jose gola, ostrava, ben lilly, hans zinsser
20 accountant, frank pais, laura marx, como, domitia lepida
100 artist, , aviator, hans zinsse, john h cough
200 physician, artist, raich carter, coach, mark shivas
500 artist, physician, cavan, sex worker, attorney at law

5.7 Graph Embedding

In this part, we perform experiments with the skip-gram
model on the task of graph embedding.

5.7.1 Experiment Setup

Two famous graph data sets are used here: Cora and
Citeseer, both of which are academic citation networks
introduced in [35]. Cora contains 2,708 papers with 5,429
connections in machine learning area. These papers belong
to 7 different classes. Citeseer is formed by 3,312 papers in 6
areas. The total number of connections is 4,660. In this part
we compare NSCaching (in Algorithm 6) with the following
methods.

– LINE [49]: In this method, the embeddings are trained
to preserve the first order, i.e., the direct connections,
and second order, i.e., the neighborhood similarities, in
graphs.

22 Yongqi Zhang et al.

Table 11: Node classification results.

datasets methods
30% 50% 70%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Cora

LINE [49] 0.8093±0.0027 0.8037±0.0021 0.8120±0.0025 0.8024±0.0029 0.8096±0.0043 0.8037±0.0057
Node2vec 0.8130±0.0031 0.8061±0.0031 0.8142±0.0024 0.8064±0035 0.8376±0.0038 0.8323±0.0025

SeedNE [18] 0.8142±0.0033 0.8089±0.0023 0.8195±0.0024 0.8081±0.0030 0.8364±0.0047 0.8315±0.0024
NSCaching 0.8185±0.0031 0.8108±0.0028 0.8273±0.0039 0.8184±0.0043 0.8413±0.0019 0.8334±0.0027

Citeseer

LINE [49] 0.5465±0.0027 0.4984±0.0044 0.5488±0.0035 0.5074±0.0032 0.5754±0.0027 0.5175±0.0039
Node2vec 0.5755±0.0019 0.5253±0.0017 0.5793±0.0013 0.5357±0.0016 0.5936±0.0044 0.5410±0.0013

SeedNE [18] 0.5762±0.0028 0.5279±0.0030 0.5918±0.0025 0.5369±0.0031 0.6059±0.0015 0.5552±0.0038
NSCaching 0.5864±0.0018 0.5297±0.0047 0.5982±0.0020 0.5531±0.0029 0.6120±0.0015 0.5712±0.0018

– Node2vec [21]: Different from LINE, Node2vec uses
biased random walk to preserve the topology information
on graphs. The generated walks are regarded as sentences
in the language model. In this way, skip-gram model is
used to learn the embeddings. The distribution used to
sample negative nodes is proportional to 3/4 of the nodes’
frequency.

– SeedNE [18]: To improve the negative sampling in skip-
gram model, SeedNE selects the negative nodes whose
similarities with the positive node are higher than an
increasing threshold. Either the self-embedding or a
learned generator can be used to indicate the similarities.
To guarantee stability, we use self-embedding in this part.
This sampling method also has some connection with the
self-paced learning, but the problem of E&E is not well
addressed.

In order to make a fair comparison with the baselines, we
set the embedding dimension to be 100 for all the datasets as
in [18]. Similar as [21], 10 random walks are generated for
each node with p = 0.25,q = 0.25, both of which are hyper-
parameters controlling the biased random walk. The window
size |Wu| is set to be 10 for each node in the walks. The walks
are fixed when comparing different models. Finally, we use
Adam [28] as the optimizer. The learning rate is set as the
default value 10−3 and we use λ = 10−7 as the weight decay
value.

To measure the quality of the learned embeddings of
different methods, we use node classification task as the
testbed. After the embeddings are learned, a logistic re-
gression model is learned as the classifier. Specifically, we
use the cache-based skip-gram model to train the node
embeddings. Then the embeddings and their corresponding
labels are fed into the classifier. Following [18, 21, 49],
we use F1-score, which considers both the precision and
recall, to measure the test accuracy. It is a widely used
metric in binary classification and is computed by F1 =

2 · precision·recall/precision+recall. Considering that the problem
here is a multi-class task, we use two variants

– Micro-F1: the precision and recall are computed by
ignoring the type, and then computing the F1-score.

– Macro-F1: the precision and recall are computed sepa-
rately on each class, and return the average F1-score.

The larger values of the F1-scores indicate better perfor-
mance.

5.7.2 Empirical Results

We randomly select {30%, 50%, 70%} labeled nodes to
train the classifier five times and evaluate the performance
on the remaining nodes respectively. We report the average
and the standard deviation on the node classification task
in Table 11. Comparing with the frequency-based negative
sampling method, i.e., Node2vec [21], the NSCaching based
skip-gram method and SeedNE gain significant improve-
ment since they are able to capture the dynamic distribution
of negative samples. By comparing Node2vec (skip-gram)
with LINE, we can see that the random walk based model
is better than LINE, which only uses direct connection and
neighbors to measure the similarity. Besides, NSCaching
outperforms another self-paced negative sampling method
SeedNE with better control of E&E.

6 Conclusion

In this paper, we propose NSCaching, a novel negative
sampling method for knowledge graph embedding learn-
ing. The negative samples are sampled from a cache that
can dynamically hold large-gradient negative samples. We
theoretically understand the convergence and effectiveness
from both convex and non-convex case. In order to balance
exploration and exploitation during the sampling proce-
dure, we use AutoML to automatically balance E&E for
NSCaching in regard of sampling and updating the cache. In
addition, we extend NSCaching to skip-gram model, which
is widely used in word embedding and graph embedding.
Experimentally, we test NSCaching on benchmark datasets
and various scoring functions. Empirical results show that
the method can generalize well under various settings and
achieves state-of-the-arts performance. In future work, we
will use AutoML technique to search for scoring functions

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding 23

[68] and explore recurrent neural architectures to learn from
relational paths in knowledge graphs [67].
Acknowledgements

A Appendix: Proof of Theorem 1

Proof. Following [70], we consider a more general optimization for-
mulation as minw F̄(w)≡ 1

n ∑
n
i=1 φi(w)+λ r(w), which covers (11) as

a special case with λ = 0. Then, the stochastic training gives wt+1 as

wt+1=argmin
w

[
(npt

it)
−1w>∇φit (w

t)+λ r(w)+
1
ηt

Bψ (w,wt)

]
, (18)

where Bψ is a Bregman distance function measuring the difference
between w and wt . Based on (18), we state Theorem 3 in [70] as

Theorem 2 ([70]) Let wt be generated from (18). Assume Bψ is σ -
strongly convex w.r.t. a norm ‖ · ‖, F̄ and r are convex, if ηt = η , the
following inequality holds for any T ≥ 1

1
T ∑

T
t=1E[F̄(wt)]−E[F̄(w∗)]

≤ 1
T

[
1
η

Bψ (w∗,w1)+
η

2σ
∑

T
t=1E‖∇φit (w

t)/npt
it
‖2
]

where the expectation is take with distribution pt .

In our Algorithm 5, we do not have r and thus λ = 0 in (11).
Besides, Bψ (w,wt) = 1

2‖w−wt‖2 in our case, thus σ = 1. Above all,
we have Theorem 1 which is derived from Theorem 2.

References

1. M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. In
ICLR, 2017.

2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives. DBpedia: A nucleus for a web of open data. In The
Semantic Web, pages 722–735. Springer, 2007.

3. Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum
learning. In ICML, pages 41–48, 2009.

4. J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for
hyper-parameter optimization. In NIPS, pages 2546–2554, 2011.

5. J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. JMLR, 13(Feb):281–305, 2012.

6. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for structuring
human knowledge. In ACM SIGMOD, pages 1247–1250, 2008.

7. A. Bordes, S. Chopra, and J. Weston. Question answering with
subgraph embeddings. In Conference on EMNLP, pages 615–620,
2014.

8. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko. Translating embeddings for modeling multi-
relational data. In NIPS, pages 2787–2795, 2013.

9. A. Bose, H. Ling, and Y. Cao. Adversarial contrastive estimation.
In ACL (Volume 1: Long Papers), pages 1021–1032, 2018.

10. H. Cai, V. Zheng, and K. Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE TKDE,
30(9):1616–1637, 2018.

11. L. Cai and W. Wang. KBGAN: Adversarial learning for knowl-
edge graph embeddings. In Conference of NAACL, volume 1,
pages 1470–1480, 2018.

12. L. Chen, F. Yuan, J. Jose, and W. Zhang. Improving negative
sampling for word representation using self-embedded features.
In WSDM, pages 99–107, 2018.

13. T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolu-
tional 2d knowledge graph embeddings. In AAAI, 2018.

14. J. Ding, Y. Quan, X. He, Y. Li, and D. Jin. Reinforced negative
sampling for recommendation with exposure data. In IJCAI, pages
2230–2236. AAAI Press, 2019.

15. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A
web-scale approach to probabilistic knowledge fusion. In ACM
SIGKDD, pages 601–610, 2014.

16. D. Dori. Visweb-the visual semantic web: unifying human and
machine knowledge representations with object-process method-
ology. The VLDB Journal, 13(2):120–147, 2004.

17. W. Fedus, I. Goodfellow, and A. Dai. Maskgan: better text
generation via filling in the . In ICLR, 2018.

18. H. Gao and H. Huang. Self-paced network embedding. In ACM
SIGKDD, pages 1406–1415, 2018.

19. X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In International Conference
on Artificial Intelligence and Statistics, pages 249–256, 2010.

20. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adver-
sarial nets. In NIPS, pages 2672–2680, 2014.

21. A. Grover and J. Leskovec. node2vec: Scalable feature learning
for networks. In ACM SIGKDD, pages 855–864, 2016.

22. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved training of wasserstein gans. In NIPS,
pages 5767–5777, 2017.

23. F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In ICLIO, pages
507–523, 2011.

24. F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated
Machine Learning: Methods, Systems, Challenges. Springer,
2018.

25. G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph
embedding via dynamic mapping matrix. In ACL, volume 1, pages
687–696, 2015.

26. R. Kadlec, O. Bajgar, and J. Kleindienst. Knowledge base
completion: Baselines strike back. In the 2nd Workshop on
Representation Learning for NLP, pages 69–74, 2017.

27. S. Kazemi and D. Poole. SimplE embedding for link prediction in
knowledge graphs. In NeurIPS, pages 4289–4300, 2018.

28. D. Kingma and J. Ba. Adam: A method for stochastic optimiza-
tion. Technical report, arXiv:1412.6980, 2014.

29. S. Kok and P. Domingos. Statistical predicate invention. In ICML,
pages 433–440, 2007.

30. D. Koller, N. Friedman, S. Džeroski, C. Sutton, A. McCallum,
A. Pfeffer, P. Abbeel, M. Wong, D. Heckerman, C. Meek, et al.
Introduction to statistical relational learning. The MIT Press,
2007.

31. M. Kumar, B. Packer, and D. Koller. Self-paced learning for latent
variable models. In NIPS, pages 1189–1197, 2010.

32. N. Lao, T. Mitchell, and W. Cohen. Random walk inference
and learning in a large scale knowledge base. In Conference on
EMNLP, pages 529–539. ACL, 2011.

33. J. Li, C. Tao, Y. Feng, D. Zhao, R. Yan, et al. Sampling
matters! an empirical study of negative sampling strategies for
learning of matching models in retrieval-based dialogue systems.
In Proceedings of the 2019 EMNLP-IJCNLP, pages 1291–1296,
2019.

34. J. March. Exploration and exploitation in organizational learning.
Organization science, 2(1):71–87, 1991.

35. A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating
the construction of internet portals with machine learning. Infor-
mation Retrieval, 3(2):127–163, 2000.

36. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation
of word representations in vector space. In ICLR, 2013.

24 Yongqi Zhang et al.

37. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and phrases and their com-
positionality. In NIPS, pages 3111–3119, 2013.

38. T. Mikolov and G. Yih, W.and Zweig. Linguistic regularities in
continuous space word representations. In NAACL, pages 746–
751, 2013.

39. D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Ex-
emplar queries: a new way of searching. The VLDB Journal,
25(6):741–765, 2016.

40. D. Needell, R. Ward, and N. Srebro. Stochastic gradient descent,
weighted sampling, and the randomized kaczmarz algorithm. In
NIPS, pages 1017–1025, 2014.

41. M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of
the IEEE, 104(1):11–33, 2015.

42. N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor.
Industry-scale knowledge graphs: lessons and challenges. Queue,
17(2):48–75, 2019.

43. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In
NeurIPS, pages 8024–8035, 2019.

44. B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In ACM SIGKDD, pages 701–710, 2014.

45. A. Rawat, J. Chen, F. Yu, A. Suresh, and S. Kumar. Sampled
softmax with random fourier features. In NeurIPS, pages 13857–
13867, 2019.

46. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
BPR: Bayesian personalized ranking from implicit feedback. In
Conference on UAI, pages 452–461, 2009.

47. F. Suchanek, G. Kasneci, and G. Weikum. YAGO: a core of
semantic knowledge. In WWW, pages 697–706, 2007.

48. Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In ICLR, 2018.

49. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line:
Large-scale information network embedding. In WWW, pages
1067–1077, 2015.

50. K. Toutanova and D. Chen. Observed versus latent features for
knowledge base and text inference. In Workshop on CVSMC,
pages 57–66, 2015.

51. T. Trouillon, C. Dance, É. Gaussier, J. Welbl, S. Riedel, and
G. Bouchard. Knowledge graph completion via complex tensor
factorization. JMLR, 18(1):4735–4772, 2017.

52. H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang,
X. Xie, and M. Guo. Graphgan: Graph representation learning
with generative adversarial nets. In AAAI, 2018.

53. J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang,
and D. Zhang. IRGAN: A minimax game for unifying generative
and discriminative information retrieval models. In ACM SIGIR,
pages 515–524, 2017.

54. P. Wang, S. Li, and R. Pan. Incorporating GAN for negative
sampling in knowledge representation learning. In AAAI, 2018.

55. Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE
TKDE, 29(12):2724–2743, 2017.

56. Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph
embedding by translating on hyperplanes. In AAAI, volume 14,
pages 1112–1119, 2014.

57. B. Welford. Note on a method for calculating corrected sums of
squares and products. Technometrics, 4(3):419–420, 1962.

58. R. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-
4):229–256, 1992.

59. C. Wu, R. Manmatha, A. Smola, and P. Krahenbuhl. Sampling
matters in deep embedding learning. In Proceedings of the ICCV,
pages 2840–2848, 2017.

60. B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities
and relations for learning and inference in knowledge bases. In
ICLR, 2017.

61. Q Yao and M. Wang. Taking human out of learning applications:
A survey on automated machine learning. Technical report, arXiv
preprint, 2018.

62. R. Ying, R. He, K. Chen, P. Eksombatchai, W. Hamilton, and
J. Leskovec. Graph convolutional neural networks for web-scale
recommender systems. In ACM SIGKDD, pages 974–983, 2018.

63. C. Zhang, Y. Li, N. Du, W. Fan, and P. Yu. On the generative
discovery of structured medical knowledge. In SIGKDD, pages
2720–2728, 2018.

64. F. Zhang, N. Yuan, D. Lian, X. Xie, and W. Ma. Collaborative
knowledge base embedding for recommender systems. In ACM
SIGKDD, pages 353–362, 2016.

65. S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based
recommender system: A survey and new perspectives. ACM
Computing Surveys, 52(1):1–38, 2019.

66. W. Zhang, T. Chen, J. Wang, and T. Yu. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In
ACM SIGIR, pages 785–788, 2013.

67. Y. Zhang, Q. Yao, and L. Chen. Neural recurrent structure search
for knowledge graph embedding. Technical report, 2019.

68. Y. Zhang, Q. Yao, W. Dai, and L. Chen. Autosf: Searching scoring
functions for knowledge graph embedding. In ICDE, pages 433–
444. IEEE, 2020.

69. Y. Zhang, Q. Yao, Y. Shao, and L. Chen. NSCaching: Simple and
efficient negative sampling for knowledge graph embedding. In
ICDE, pages 614–625, 2019.

70. P. Zhao and T. Zhang. Stochastic optimization with importance
sampling for regularized loss minimization. In ICML, pages 1–9,
2015.

71. L. Zou, L. Chen, M. Özsu, and D. Zhao. Answering pattern match
queries in large graph databases via graph embedding. The VLDB
Journal, 21(1):97–120, 2012.

	1 Introduction
	2 Preliminaries and Related Works
	3 Proposed Model
	4 Extension to Skip-gram Model
	5 Experiments
	6 Conclusion
	A Appendix: Proof of Theorem 1

