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Abstract

Negative sampling approaches are prevalent in implicit collaborative filtering for
obtaining negative labels from massive unlabeled data. As two major concerns in
negative sampling, efficiency and effectiveness are still not fully achieved by recent
works that use complicate structures and overlook risk of false negative instances.
In this paper, we first provide a novel understanding of negative instances by
empirically observing that only a few instances are potentially important for model
learning, and false negatives tend to have stable predictions over many training
iterations. Above findings motivate us to simplify the model by sampling from
designed memory that only stores a few important candidates and, more importantly,
tackle the untouched false negative problem by favouring high-variance samples
stored in memory, which achieves efficient sampling of true negatives with high-
quality. Empirical results on two synthetic datasets and three real-world datasets
demonstrate both robustness and superiorities of our negative sampling method.

1 Introduction

Collaborative filtering (CF), as the key technique of personalized recommender systems, focuses on
learning user preference from the observed user-item interactions [27, 33]. Today’s recommender
systems also witness the prevalence of implicit user feedback, such as purchases in E-commerce
sites and watches in online video platforms, which is much easier to collect compared to the explicit
feedback (such as ratings) on item utility. In above examples, each observed interaction normally
indicates a user’s interest on an item, i.e., a positive label, while the rest unobserved interactions
are unlabeled. As for learning an implicit CF model from this positive-only data, a widely adopted
approach is to select a few instances from the unlabeled part and treat them as negative labels, also
known as negative sampling [10, 33]. Then, the CF model is optimized to give positive instances
higher scores than those given to negative ones [33].

Similar to other related applications in representation learning of text [26] or graph data [29], negative
sampling in implicit CF also has two major concerns, i.e., efficiency and effectiveness [10, 45].
First, the efficient sampling process is required, as the number of unobserved user-item interactions
can be extremely huge. Second, the sampled instances need to be high-quality, so as to learn
useful information about user’s negative preference. However, since implicit CF is an application-
driven problem where user behaviors play an important role, it may be unrealistic to assume that
unobserved interactions are all negative, which introduces false negative instances into training
process [20, 25, 48]. For example, an item may be ignored because of its displayed position and form,
not necessarily the user’s dislike. Therefore, false negative instances naturally exist in implicit CF.

Previous works of negative sampling in implicit CF mainly focus on replacing the uniform sampling
distribution with another proposed distribution, so as to improve the quality of negative samples.
Similar to the word-frequency based distribution [26] and node-degree based distribution [29]
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used in other domains, an item-popularity based distribution that favours popular items is usually
adopted [10, 41]. In terms of sample quality, the strategy emphasizing hard negative samples has been
proven to be more effective [28], as it can bring more information for model training. Specifically,
this is achieved by either assigning higher probability to instances with large prediction score [32, 45]
or leveraging techniques of adversarial learning [11, 28, 37]. Nevertheless, the above hard negative
sampling approaches cannot simultaneously meet the requirements on efficiency and effectiveness.
On the one hand, several state-of-the-art solutions [11, 28] use complicate structures like generative
adversarial network (GAN) [17] for generating negative instances, which has posed a severe challenge
on model efficiency. On the other hand, all these methods overlook the risk of introducing false
negative instances and instead only focus on hard ones, making the sampling process less robust for
training an effective CF model with false negatives.

Different from above works, this paper formulates the negative sampling problem as efficient learning
from unlabeled data with the presence of noisy labels, i.e., false negative instances. We propose to
simplify and robustify the negative sampling for implicit CF, which has three main challenges:

• How to capture the dynamic distribution of true negative instances with a simple model? In
the implicit CF problem, true negative instances are hidden inside the massive unlabeled data,
along with false negative instances. Although negative instances in other domains follow a skewed
distribution and can be modeled by a simple model [26, 46], it remains unknown if this prior
knowledge can be applied in the implicit CF problem that expects true negative instances only.

• How can we reliably measure the quality of negative samples? Given the risk of introducing
false negative instances, the quality of negative samples needs to be measured in a more reliable
way. However, it is non-trivial to design a discriminative criterion that can help to accurately
identify true negative instances with high quality.

• How can we efficiently sample true negative instances of high-quality? Although learning
effective information from unlabeled and noisy data is related to general machine learning ap-
proaches including positive-unlabeled leaning [22] and instance re-weighting [31], these methods
are not suitable for implicit CF problem, where the huge number of unobserved user-item in-
teractions requires an efficient modeling. Instead, our proposed method needs to maintain both
efficiency, by sampling, and effectiveness, by considering samples’ informativeness and reliability
simultaneously. This has not been tackled before in both implicit CF and other similar problems.

Solving above three challenges calls for a deep and fundamental understanding of different negative
instances in implicit CF problem. In this paper, we empirically find that negative instances with
large prediction scores are important for the model learning but generally rare, i.e., following a
skewed distribution. A more novel finding is that false negative instances always have large scores
over many iterations of training, i.e., a lower variance, which provides a new angle on tackling
false negative problem remained in existing approaches. Motivated by above two findings, we
propose a novel simplified and robust negative sampling approach, named SRNS, that 1) captures the
dynamic distribution of negative instances with a memory-based model, by simply maintaining the
promising candidates with large scores, and 2) leverages a high-variance based criterion to reliably
measure the quality of negative samples, reducing the risk of false negative instances effectively.
Above two designs are further combined into a two-step sampling scheme that constantly alternates
between score-based memory update and variance-based sampling, so as to efficiently sample true
negative instances with high-quality. Experiment results on two synthetic datasets demonstrate the
robustness of our SRNS under various levels of noisy circumstances. Further experiments on three
real-world datasets also empirically validates its superiorities over state-of-the-art baselines, in terms
of effectiveness and efficiency.

2 Background

Training an implicit CF model generally involves three main steps, i.e., choosing scoring function
r, objective function L and negative sampling distribution pns. The scoring function r(pu,qi,β)
calculates the relevance between a user u ∈ U and an item i ∈ I based on u’s embedding pu ∈ RF
and i’s embedding qi ∈ RF , with a learnable parameter β. It can be chosen among various
candidates including matrix factorization (MF) [23], multi-layer perceptron (MLP) [19], graph
neural network (GNN) [3, 39], etc. For example, the generalized matrix factorization (GMF) [19]
is: r(pu,qi,β) = β>(pu � qi), where the learnable parameter of r is a vector β and � denotes
element-wise product. A large value of r(pu,qi,β) indicates u’s strong preference on i, denoted
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Table 1: Comparison of the proposed SRNS with closely related works, where rk(j|u) is the (u, j)’s
rank sorted by score, popj is the j’s item popularity,B is the mini-batch size, T is the time complexity
of computing an instance score, E is the epoch of lazy-update, and F denotes false negative.

pns(j|u) Optimization Time Complexity Robustness

Uniform [33] Uniform({j /∈ Ru}) SGD (from scratch) O(BT ) ×

NNCF [10] ∝ (popj)
0.75 SGD (from scratch) O(B2T ) ×

AOBPR [32] ∝ exp(−rk(j|u)/λ) SGD (from scratch) O(BT ) ×
IRGAN [37] learned p̄ns(j|u) (GAN) REINFORCE (pretrain) O(B|I|T ) ×
AdvIR [28] learned p̄ns(j|u) (GAN) REINFORCE (pretrain) O(BS1T ) ×

SRNS (proposed) variance-based (see (4)) SGD (from scratch) O(B
E

(S1 + S2)T )
√

by rui for simplicity. Each observed instance between u and the interacted item i ∈ Ru, i.e., (u, i),
can be seen as a positive label. As for the rest unobserved interactions, i.e., {(u, j)|j /∈ Ru}, the
probability of (u, j) being negative is

Pneg(j|u, i) = sigmoid(rui − ruj), (1)

which approaches to 1 when rui � ruj . In other words, when learning user preference in implicit
CF, we care more about the pairwise ranking relation between an observed interaction (u, i) ∈ R
and another unobserved interaction (u, j), instead of absolute values of rui and ruj . The learning
objective can be formulated as minimizing following loss function [33]:

L({pu}, {qi},β) =
∑

(u,i)∈R

[
Ej∼pns(j|u) [− logPneg(j|u, i)]

]
, (2)

where the negative instance (u, j) is sampled according to a specific distribution pns(j|u). Learning
above objective is equivalent to maximizing the likelihood of observing such pairwise ranking
relations rui > ruj , which can be replaced by other objectives used in implicit CF problems, such as
marginal hinge loss [43] and binary cross-entropy loss [19].

The most widely used pns(j|u) is the uniform distribution [33], suffering from low quality of samples.
To solve this, previous works [11, 28, 32] propose to sample much harder instances, containing more
information. Among them, state-of-the-arts [11, 28] simultaneously learn a parameterized p̄ns(j|u) to
maximize above loss function in (2), based on GAN. Therefore, the sampled negative instance (u, j)
corresponds to a low Pneg(j|u, i) and a high ruj , which is generally hard for CF model to learn. In
other words, (u, j) has a high probability of being positive, denoted as Ppos(j|u, i) = 1−Pneg(j|u, i).
Different choices of pns(j|u) in previous works are listed in Table 1. Since none of them have
enough robustness to handle false negative instances, and GAN-based model structure is much more
complicate, our goal is to propose a more robust and simplified negative sampling method.

3 SRNS: the Proposed Method

To improve robustness and efficiency for negative sampling in implicit CF, we seek for a deep
understanding of different negative instances, including false negative instances and negative instances
obtained by uniform sampling or hard negative sampling. We then describe the proposed method
based on these understandings.

3.1 Understanding False Negative Instances

In previous works [28, 32], the positive-label probability Ppos (or the prediction score) is widely used
as the sampling criterion, as it is proportional to the sample difficulty. Therefore, in Figure 1 (details
on setup are in Appendix C.2), we have a closer look at the negative instances’ distribution w.r.t.
Ppos and further analyze the possibility of using Ppos to discriminate true negative instances and false
negative instances. Besides, we are also curious about the model’s prediction uncertainty regarding to
different negative instances, and investigate the variance of Ppos in Figure 1(d).

Based on above analysis of negative instances in implicit CF, we have following two findings:

1) The score distribution of negative instances is highly skew. Regardless of the training, only a few
negative instances have large scores (Figure 1(a)).
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(a) Distribution of Ppos. (b) Comparing Ppos of neg. (c) Comparing LER. (d) Comparing Std
MeanPpos.

Figure 1: Analysis of negative instances on ML-100k. D: difficulty level; Label Error Ratio (LER):
= (# of false negative samples)/ (# of all selected negative samples) ; CCDF: complementary cumulative distribution
function, p50: median value among a set of negative instances, Std/Mean: normalized variance).

2) Both false negative instances and hard negative instances have large scores (Figure 1(b)), making it
hard to discriminate them (harder negative samples are more likely be false negative, Figure 1(c)).
However, the false negative instances have lower prediction variance comparatively (Figure 1(d)).

The first finding demonstrates the potential of just capturing a part of the full distribution corre-
sponding to those large-scored negative instances, which are more likely to be high-quality. Similar
observations have also been discussed in graph representation learning, suggesting a skewed negative
sampling distribution that focuses on hard ones [42, 46].

As for the second finding, it provides us a reliable way of measuring sample quality based on
prediction variance, sharing the same intuition with [8] that improves stochastic optimization by
emphasizing high variance samples. Specifically, we prefer those negative samples with both large
scores and high variances, avoiding false negative instances that always have large scores over many
iterations of training. In terms of robustifying negative sampling process, none of above works in
implicit CF and other domains have tackled this problem, except for a simple workaround that only
selects hard negative samples but avoids the hardest ones [43, 46].

3.2 SRNS Method Design

As above, on the one hand, we are motivated to use a small amount of memory for each user, storing
hard negative instances that have large potential of being high-quality. This largely simplifies the
model structure, by focusing on a partial set of instances, which thus improves efficiency. On the
other hand, we propose a variance-based sampling strategy to effectively obtain samples that are both
reliable and informative. Our simplified and robust negative sampling (SRNS) approach addresses
the remaining challenges on model efficiency and robustness. Algorithm 1 shows the implicit CF
learning framework, i.e., minimizing loss function in (2), based on SRNS.

Algorithm 1: The proposed Simplified and Robust Negative Sampling (SRNS) method.
Input :Training setR = {(u, i)}, embedding dimension F , scoring function r with learnable parameter β,

and memory {Mu|u ∈ U}, each with size S1;
Output :Final user embeddings {pu|u ∈ U} and item embeddings {qi|i ∈ I}, and r;

1 Initialize {pu|u ∈ U} and {qi|i ∈ I}, β and {Mu|u ∈ U};
2 for t = 1, 2, ..., T do
3 Sample a mini-batchRbatch ∈ R of size B;
4 for each (u, i) ∈ Rbatch do
5 Get the candidate items from u-related memoryMu;
6 Sample the item j fromMu, based on the variance-based sampling strategy (4);
7 Uniformly sample S2 items from {k|k /∈ Ru} (M̄u), and merge with originalMu;
8 UpdateMu based on the score-based updating strategy (3);
9 Update embeddings {pu,qi,qj} and parameters β based on gradient w.r.t. L (2).

10 end
11 end

The learning process of the SRNS is carried out in mini-batch mode, and alternates between two
main steps. First, according to the high-variance based criterion, a negative instance for each training
instance (u, i) is sampled from u’s memoryMu (line 6), which already stores S1 candidates with
high potential. To improve efficiency, all positive instances of a same user u is designed to share one
memoryMu. Second, as the model is constantly changing during the training process,Mu requires
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a dynamic update so as to keep track of the promising candidates for negative sampling. Specifically,
this is completed by first extending it intoMu ∪M̄u with additional S2 instances that was uniformly
sampled (line 7), and then choosing S1 hard candidates to obtain a new Mu (line 8). A similar
two-step scheme is adopted by a related work that focuses on negative sampling for knowledge graph
embeddings [46]. However, unlike SRNS leveraging the instance’s variance in the sampling step, it
uniformly chooses an instance from memory, which cannot enhance model’s robustness effectively.

Score-based memory update. In this part, we propose a memory-based model to simply
capture the dynamic distributions of true negative instances. Specifically, a memory Mu =
{(u, k1), ..., (u, kS1)} of size S1 is assigned to each user u, storing the negative instances that
are available to u in sampling. To ensure only those informative instances are maintained, we design
a score-based strategy to dynamically update theMu, which tends to involve more hard negative
instances. For an extended memory that merges the oldMu and a set of uniformly sampled instances
M̄u, i.e.,Mu ∪ M̄u, the newMu is updated by sampling S1 instances according to the following
probability distribution:

Ψ̄(k|u,Mu ∪ M̄u) = exp(ruk/τ)/
∑

k′∈Mu∪M̄u

exp(ruk′/τ), (3)

where a lower temperature τ ∈ (0,+∞) would make Ψ̄ focus more on large-scored instances.

Variance-based sampling. As we have demonstrated in finding 2, oversampling hard negative
instances may increase the risk of introducing false negatives, making above score-based updating
strategy less robust. Motivated by the observed low-variance characteristic of false negatives, we
propose a robust sampling strategy that can effectively avoid this noise by favouring those high-
variance candidates. Given a positive instance (u, i) and u’s memory Mu, for each candidate
(u, k) ∈Mu, we maintain Ppos(k|u, i) values at tth training epoch as [Ppos(k|u, i)]t. The proposed
variance-based sampling strategy chooses the negative instance (u, j) fromMu by:

j = arg maxk∈Mu
Ppos(k|u, i) + αt · std[Ppos(k|u, i)]. (4)

Note that we also consider the instance difficulty, i.e., Ppos(k|u, i), to ensure the informativeness of
sampled negative instances, with a hyper-parameter αt controlling the importance of high-variance at
the t-th training epoch. When αt = 0, our proposed sampling approach degenerates into a difficulty-
only strategy that follows the similar idea as previous works [11, 28, 32]. Since all instances tend
to have high variance at an early training stage, the variance term should not be weighted too much.
Therefore, we expect a “warm-start” setting of αt that reduces the influence of prediction variance at
first and then gradually strengthens it (details of αt will be discussed in Section 4.2).

Bootstrapping. In Algorithm 1, false negative instances are identified by checking their prediction
variance. However, this assumes that the CF model has some discriminative ability. There is an
important observation that deep models can memorize easy training instances first and gradually
adapt to hard instances [1, 18, 44]. Fortunately, we also observe such memorization effect for deep
CF models (see Section 4.2), which means that the false negative instances among unlabeled data are
generally more difficult and may not be memorized at an early stage. In other words, SRNS can be
self-boosted by first learning to discriminate those easy negative instances and then tackling the rest
real hard ones with the help of variance-based criterion.

3.3 Complexity Analysis

Here, we analyze the time complexity of SRNS (Algorithm 1) and compare it with related negative
sampling approaches in Table 1. Compared with a uniform sampling approach [33], the main
additional cost comes from score-based memory update and variance-based sampling. The former
requires to compute scores of S1 + S2 candidates for each positive instance and sample S1 of
them according to a normalized distribution Ψ̄ that is based on computed scores. Thus the time
complexity is O((S1 + S2)T ), where T denotes the operation count of score computation. As for
the latter, computing std[Ppos(k|u, i)] of each candidate and choosing the final negative instance in
(4) take O(S1). Thus, the cost is O((S1 + S2)T ) for each positive instance, which can be reduced
to O((S1 + S2)T/E) using lazy-update every E epochs. Model parameters in CF consists of two
parts, i.e., embeddings and scoring function parameters, and the former is generally much larger.
Specifically, SRNS’s model complexity is about (|U| + |I|)F , which can double in those GAN-
based state-of-the-arts [28, 37]. As in Table 1, SRNS is not only more simplified (in terms of time
complexity), but also can be easily trained from scratch.
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4 Experiments

We first conduct controlled experiments with synthetic noise, so as to investigate SRNS’s robustness
to false negative instances (Section 4.2). Then, we evaluate the SRNS’s performance on the implicit
CF task, based on real data experiments (Section 4.3).

4.1 Experimental Settings

Dataset. Table 2 summarizes datasets used for experiments, which are popularly used in the
literature [16, 19, 28, 37]. We use ML-100k and Ecom-toy for synthetic data experiments and do
a 4:1 random splitting for train/test data. To simulate the noise, we randomly select 50%/25% of
groundtruth records in the test set of ML-100k/Ecom-toy. The selected records can be regarded as
false negative instances during training, denoted as F . As for real data experiments, we use the rest
three datasets and adopt leave-one-out strategy, i.e., holding out users’ most recent records and second
to the last records (sorted w.r.t. time-stamp) as the test set and validation set, respectively [19, 33].

Table 2: Statistics of datasets.

Category Dataset User Item Train Validation Test F (Noise)

Synthetic
noisy dataset

Movielens-100k 942 1,447 44,140 - 11,235 5,509
Ecommerce-toy 1,000 2,000 60,482 - 14,612 3,246

Real-world
dataset

Movielens-1m 6,028 3,533 563,186 6,028 6,028 -
Pinterest 55,187 9,916 1,390,435 55,187 55,187 -

Ecommerce 66,450 59,290 1,625,006 66,441 66,450 -

Baselines. We compare SRNS with three types of methods listed in Table 1. First, for methods
using a fixed negative sampling distribution, we choose Uniform [33] and NNCF [10]. Second, for
methods based on hard negative sampling, we choose AOBPR [32], IRGAN [37], RNS-AS [11] and
AdvIR [28], where the last three are GAN-based state-of-the-arts. Finally, we also compare with a
non-sampling approach ENMF [9] that regards all the unlabeled data as negative labels.

Hyper-parameter and optimizer. For better performance, we mainly use GMF [19] as the scoring
function r, but also experiment on another popular choice, i.e., a MLP with sigmoid activation (Sec-
tion 4.3). Hyper-parameters of SRNS and baselines are carefully tuned according to validation
performance (details are in Appendix B.4). For all experiments, Adam optimizer is used and the
mini-batch size is 1024. Specifically, we run each synthetic data experiment 400 epochs and repeat
five times. As for real data experiments, we conduct the standard procedure [10, 39], running 400
epochs and terminating training if validation performance does not improve for 100 epochs.

Experimental setup. In the implicit CF, the model is evaluated by testing if it can generate a better
ranked item list Su for each user u. In the synthetic case, Su contains u’s test items Gu and the
rest items that are not interacted by u. While in the real-world case with much larger item count
|I|, we follow a common strategy [19, 23] to fix the list length |Su| as 100, by randomly sampling
100−|Gu| non-interacted items. We measure Su’s performance by Recall and Normalized Discounted
Cumulative Gain (NDCG). Specifically, Recall@k(u) = |Su(k) ∩ Gu|/|Gu|, NDCG@k(u) =∑

i∈Su(k)∩Gu 1/ log2(pi + 1), where Su(k) denotes truncated Su at k and pi denotes i’s rank in Su.
Comparatively, NDCG accounts more for the position of the hit by assigning higher scores to hits
at top ranks and NDCG@1(u)=Recall@1(u). We choose a rather small k in {1, 3}, which matters
more in applications. The final report Recall/NCDG is the average score among all test users.

4.2 Synthetic Noise Experiments

Synthetic false negative instances are simulated by flipping labels of test records (F in Table 2). To
manually inject this noise, we constantly feed a false negative into each user’s memoryM during
sampling process. We control this impact by varying the size of available false negative instances
in different experiments, randomly sampling σ × 100 (%) from F (σ ∈ [0, 1]). Note that σ = 0
indicates an “ideal” case whereM is not influenced by F . In these experiments, we fix the memory
size S1 as 20 (details on setup are in Appendix C.3).
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(a) N@3, ML-100k (b) R@3, ML-100k (c) N@3, Ecom-toy (d) R@3, Ecom-toy

Figure 2: Average test Recall/NDCG of SRNS with different σ on two synthetic datasets over the last
50 epochs. Two sampling strategies are compared, i.e., difficulty-only vs. variance-based (proposed).

Sampling criterion. We first investigate if the high-variance based criterion in SRNS can indeed
identify true negative instances which are of high-quality, by comparing with a difficulty-only
strategy (i.e., weight αt = 0). Figure 2 shows comparison results w.r.t. test Recall and NDCG,
under different levels of noisy supervision (σ). Although increasing noisy level can harm model’s
performance, we can observe a consistent improvement of variance-based strategy with different σ.

Warm-start. Motivated by [18], we propose to linearly increase the value of αt as epoch number t
increases. Specifically, αt = α·min(t/T0, 1), where T0 denotes the threshold of stopping increase. In
Figure 3(a)-(b), we compare this increased setting of αt with another two competitor, i.e., αt = α (flat)
and αt = α ·max(1− t/T0, 0) (decreased). It can be clearly observed that the increased setting of
αt performs better than others, as the former can better leverage variance-based criterion after false
negative instances become more stable.

(a) σ = 1, ML-100k (b) σ = 0.5, Ecom-toy (c) σ = 1, ML-100k (d) σ = 1, Ecom-toy

Figure 3: (a)-(b) Test NDCG vs. number of epochs on two datasets, with the error bar for STD high-
lighted as a shade. (c)-(d) Memorization effect of the CF model under extremely noisy supervision.

Bootstrapping. Finally we demonstrate SRNS’s self-boosting capability, by illustrating the mem-
orization effects of CF models in Figure 3(c)-(d). To ensure a clear observation, we inject much
intenser noise during sampling process, by extending F to 100% and 40% of the original test set on
ML-100k and Ecom-toy, respectively. Under extremely noisy supervision (σ = 1), though sampling
based on difficulty only (αt = 0), the model’s test NDCG first reaches a high level and then gradually
decreases, indicating that it can avoid the impact of false negative instances at an early stage.

Table 3: Performance comparison w.r.t. test NDCG and Recall on three datasets. The last row shows
relative improvement in percentage compared with the second best.

Category Method Movielens-1m Pinterest Ecommerce
N@1 N@3 R@3 N@1 N@3 R@3 N@1 N@3 R@3

Non-sampling ENMF 0.1846 0.3021 0.3882 0.2594 0.4144 0.5284 0.1317 0.2095 0.2670

Fixed Dist.
Sampling

Uniform 0.1744 0.2846 0.3663 0.2586 0.4136 0.5276 0.1265 0.2057 0.2640
NNCF 0.0829 0.1478 0.1971 0.2292 0.3699 0.4735 0.0833 0.1420 0.1855

Hard
Negative
Sampling

AOBPR 0.1802 0.2905 0.3728 0.2596 0.4165 0.5319 0.1293 0.2108 0.2710
IRGAN 0.1755 0.2877 0.3708 0.2587 0.4143 0.5282 0.1275 0.2065 0.2648
RNS-AS 0.1823 0.2932 0.3754 0.2690 0.4233 0.5359 0.1335 0.2131 0.2714
AdvIR 0.1790 0.2941 0.3792 0.2689 0.4235 0.5363 0.1357 0.2141 0.2719

Proposed SRNS 0.1933 0.3070 0.3912 0.2891 0.4391 0.5486 0.1471 0.2256 0.2833
4.71% 1.62% 0.77% 7.47% 3.68% 2.29% 8.40% 5.37% 4.19%
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(a) Time, ML-1m (b) Time, Pinterest (c) Time, Ecom (d) S1, ML-1m

(e) S1, Pinterest (f) S1, Ecom (g) r, ML-1m (h) r, Ecom

Figure 4: (a)-(c) Validation NDCG vs. wall-clock time (in seconds) on three datasets. (d)-(f) Test
NDCG vs. SRNS’s memory size S1, using different sampling strategies on three datasets. (g)-(h)
Test NDCG and Recall of Uniform and SRNS, using two r (GMF and MLP), on ML-1m and Ecom.

4.3 Real Data Experiments

Performance comparison. As shown in Table 3, we compare SRNS with seven baselines w.r.t. test
NDCG and Recall on three real-world datasets. As can be seen, SRNS consistently outperforms them,
achieving a relative improvement of 4.71∼8.40% w.r.t. NDCG@1. This indicates that SRNS can
sample high-quality negative instances and thus helps to learn a better CF model that ranks items
more accurately. Specifically, we have following three observations. First, among all baselines, hard
negative sampling approaches perform more competitively. By considering both informativeness and
reliability of negative instances, our SRNS outperforms two state-of-the-art baselines, i.e., RNS-AS
and AdvIR, that generate hard negatives based on adversarial sampling. Second, approaches using a
fixed sampling distribution perform poorly, especially NNCF that directly adopts a power distribution
based on item popularity. Third, by improving sample quality, sampling-based approaches can be
more effective than the non-sampling counterpart that models the whole unlabeled data. For example,
ENMF performs worse than RNS-AS and AdvIR on Pinterest and Ecom.

Besides effectiveness, we also compare performance in terms of efficiency, by illustrating validation
NDCG vs. wall-clock time in Figure 4(a)-(c). We observe that SRNS can converge much faster and is
more stable than RNS-AS and AdvIR that use GAN based structure. For fair efficiency comparison,
here we also start training SRNS from the same pretrained model as in RNS-AS and AdvIR.

Robustness of variance-based sampling. With the score-based updating strategy, increasing mem-
ory size S1 makes SRNS more prone to the false negatives. Therefore, we further test robustness of
the variance-based sampling (in (4)), by evaluating performance under different S1. As illustrated in
Figure 4(d)-(f), variance-based SRNS (orange line) performs stably, indicating that emphasizing high-
variance can reliably obtain high-quality samples. Comparatively, difficulty-only strategy (αt = 0,
blue line) suffers from dramatic degradation (S1=32 or 64). Another strategy for avoiding false
negatives is to randomly select a sample from memory [46], which performs less effectively than
our approach. Note that the necessity of variance-based sampling depends on the specific real-world
data and, for example, Ecom may not need this w.r.t. overall best NDCG@1 (Figure 4(f)). Generally,
our SRNS is flexible enough to switch between different situations, by controlling importance of
variance-based sampling criterion (i.e., αt).

Varying scoring function. Finally we test SRNS’s effectiveness on different r including GMF and
MLP [19]. As illustrated in Figure 4(g)-(h), we observe similar performance improvement of SRNS
over Uniform [33] when using the above two r, indicating SRNS’s capability of combining with
different r. We are also interested in exploring more choices like GNN-based r [43] in future study.
Note that embedding dimension F is set as 32 (ML-1m), 16 (Pinterest) and 8 (Ecom), respectively,
as we observe similar results with different F ∈ {8, 16, 32, 64} (details are in Appendix C.4).
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5 Conclusion

In this paper, we propose a simplified and robust negative sampling approach SRNS for implicit
CF, which can efficiently sample true negative instances that are of high-quality. Motivated by the
empirical evidence on different negative instances, our score-based memory design and variance-based
sampling criterion achieve efficiency and robustness, respectively, in negative sampling. Experimental
results on both synthetic and real-world datasets demonstrate SRNS’s robustness and superiorities.
Finally, one interesting future works would be studying the theoretical convergence guarantee of
the proposed method. We will attempt to address this issue by learning from importance sampling
methods [8, 47] in stochastic optimization.
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A Comparison Between Different Approaches

A.1 General Machine Learning Approaches

Learning an implicit CF model from the positive-only data is also related to Positive-Unlabeled (PU)
learning and learning from noisy labels, as the rest unobserved instances are unlabeled and noisy.
Motivated by these general machine learning approaches, this paper formulates the negative sampling
problem as efficient learning from unlabeled data with the presence of noisy labels, and pays more
attention on those true negative instances hidden inside the massive unlabeled data. The following
table and review on literatures discuss the differences between different approaches that can be
adapted for this problem.

Approaches Learning from
Positive-Unlabeled Data Learning from Noisy Labels Negative Sampling

Positive/Negative
Class Prior

known or estimated from
data [13, 30] unknown unknown

Assumption on
Unlabeled Data

positive or negative labels
[14, 22]

negative labels with noise
[21, 31]

unobserved
[26, 29, 33]

Handling
Uncertainty of
Unlabeled Data

minimizing the empirical
risk estimator [12, 22]

manually designing [2, 24]
or automated learning the

instance weight [21, 31, 35]

sampling unobserved
instances as negative

labels [26, 29, 33]

Learning from Positive-Unlabeled Data. Since implicit feedback data contain positive instances
only, the implicit CF problem is also related to learning from positive-unlabeled (PU) data. PU
learning formulates the problem as a binary classification, accounting for the fact that both positive
and negative labels exist in the unlabeled data [12, 14, 22]. However, it normally requires an accurate
estimation of the class-prior, which is challenging in real-world data [13, 30]. Moreover, a direct
optimization on the whole unlabeled data is generally inefficient, especially for implicit CF, where an
efficient training approach supporting large-scale data is necessary [22, 34]. In our proposed solution,
above issues are avoided by efficiently sampling negative instances from the unlabeled data and,
motivated by the idea of PU learning, we carefully distinguish those true negative instances from
others.

Learning from Noisy Labels. By regarding unobserved instances as a combination of true negative
labels and noisy labels, another choice is adapting the implicit CF into learning from noisy labels.
Typical learning approaches include curriculum learning [2], self-pace learning [24] and instance
re-weighting [21, 31, 35]. The first two approaches prefer easier instances during training process
so as to improve robustness, while these easy instances may be ineffective for learning a CF model.
Without prior information about the noisy labels, instance re-weighting approach learns the weight
of each instance with bi-level optimization on training and validation data [21, 31, 35]. However,
the size of unlabeled data in implicit CF can approach to nearly a product of user count and item
count, making above non-sampling approach become unaffordable in terms of learning efficiency.
Therefore, this work focuses on negative sampling and aims to handle noisy labels correctly at the
same time.

A.2 Specific Negative Sampling Approaches

Negative sampling approaches have also been widely adopted in other domains of embedding
learning for text, graph, etc. Motivated by these works that tend to leverage a simple model for
capturing negative sampling distribution, we design a memory-based model that simply maintains the
promising candidates with large scores. More importantly, we propose to robustify negative sampling
by emphasizing high-variance samples, which is novel in both CF and other domains. The following
table and review on literatures discuss the differences between different approaches.

Negative Sampling in Other Domains. Negative sampling approaches are widely used in many
tasks like word embedding [26], graph embedding [6] and knowledge graph embedding [38]. In
terms of capturing the distribution of negative instances, these applications generally requires a rather
simple model. For example, Word2Vec [26] sets the negative sampling distribution proportional
to the 3/4 power of word frequency, which favours those frequent words. Later works on graph
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Domain Text Graph Knowledge Graph Collaborative Filtering

Learning
Objective

semantic word
relationships node proximities

fact composed of
head/tail entity and

relation

user preferences among
items

Vanilla
Sampling
Strategy

frequency-based
[26]

degree-based
[29, 36]

uniform [4],
bernoulli [40]

uniform [33],
popularity-based [10, 41]

Improving
Sample
Quality

GAN [5]
self-paced
learning,

GAN [15]

score-based [46],
GAN [5, 7]

score-based [32, 45],
GAN [11, 28]

Leveraging
Skewness in
Distribution

favouring frequent
words [26]

favouring
high-degree

nodes [29, 36] or
positive-alike

nodes [42]

favouring
large-scored

instances [46]
none

Handling
False

Negative
none none none avoiding the hardest

instances [43]

embedding [29, 36] readily keep this skewed distribution by adapting it to the node degree. Similarly
in knowledge graph, it has been observed that negative instances with large scores are important but
rare and focusing on this partial set makes the model much simpler [46]. Another recent work on
negative sampling of graph representation learning proposes that the negative sampling distribution
should be positively but sub-linearly correlated to their positive sampling distribution [42]. However,
in terms of avoiding false negative instances, none of them have tackled this problem by designing
a robust sampling approach. Since the implicit CF is a different problem where the reliability of
sampled negative instances is much harder to guarantee, we propose to reduce this risk by emphasizing
high variance samples. Meanwhile, motivated by above examples in other domains, we also leverage
a simple model to efficiently capture the distribution of negative instances which are of high-quality.

B Implementation Details

B.1 Running Environment

The experiments are conducted on a single Linux server with AMD Ryzen Threadripper
2990WX@3.0GHz, 128G RAM and 4 NVIDIA GeForce RTX 2080TI-11GB. Our proposed SRNS
is implemented in Tensorflow 1.14 and Python 3.7.

B.2 Baselines

We compare the SRNS with following state-of-the-art approaches: (1) Uniform [33], which uniformly
selects negative samples from the unlabeled data. (2) NNCF [10], which uses a negative sampling
distribution proportional to the 3/4 power of item popularity. A hyper-parameter s is the number of
positive samples per item. b is the number of negative samples per positive sample. (3) AOBPR [32],
which improves uniform strategy by adaptively oversampling hard instances. A hyper-parameter
λ controls the skewness of distribution ∝ exp(−rk(j|u)/λ). (4) IRGAN [37], which uses an
adversarial sampler by conducting a minimax game between the recommender and the sampler. A
hyper-parameter τ is the temperature in sampling distribution (Eq. (10) in [37]). (5) RNS-AS [11],
which leverages adversarial sampling to generate hard negative samples. A hyper-parameter Ns is
size of candidate set for sampling and τ is the temperature. (6) AdvIR [28], which exploits both
adversarial sampling and training (i.e., adding perturbation) to generate better negative samples. Ns
and τ are defined similarly as above. ε controls the perturbation size. (7) ENMF [9], as a baseline,
we also compare with an non-sampling approach that regards all the unlabeled data as negative labels
and carefully assigns instance weights. A hyper-parameter c controls above weight for a negative
instance.
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B.3 Detail of MLP based r

The MLP based scoring function r(pu,qi,β) [19] takes the concatenation of pu and qi, i.e., z0 =
[pu; qi] ∈ R2F , as the input. Then there are H hidden layers, and the lth layer is defined as

zl = sigmoid(Wlzl−1 + bl), (5)

where Wl ∈ Rdl×dl−1 and bl ∈ Rdl denote the weight matrix and bias vector in this layer. Specifi-
cally, d0 = 2F and we set dl = 1

2dl−1. The last layer outputs the prediction score rui, defined as

rui = W>H+1zH + bH+1, (6)

where WH+1 ∈ RdH and bH+1 ∈ R. The learnable parameters β in this MLP based r are
{Wi,bi}(i = 1, ...,H + 1).

B.4 Hyper-parameter Tuning

Our SRNS’s hyper-parameters can be divided into three parts: (1) sampling related part, including
memory size S1, expansion size S2, temperature τ , variance-based criterion weight α, warm-start
epoch number T0. (2) r related part, including embedding dimension F and hidden layer number H .
(3) optimization related part, including learning rate lr and L2 regularization reg.

In synthetic noise experiments, since we do not explicitly split a validation set on synthetic data,
we draw two different train/test splits. The hyper-parameters are searched in the first round and
afterwards are kept constant in another round. Note that the false negative instances (F ) in there two
rounds are also independent with each other, as they are simulated by random sampling from the
corresponding test set. We run each synthetic data experiment 400 epochs without early stopping and
repeat five times. The scoring function r is GMF [19]. The memory size S1/S2 are fixed as 20/20.
The temperature τ is 1. Adam optimizer with β1 = 0.9, β2 = 0.999 is used and the mini-batch size
is set to 1024. The lazy-update epoch number E = 1. The rest hyper-parameters are tuned according
to average NDCG@3 in the last 50 training epochs. Specifically, first we use grid search to find the
best group of non-sampling related hyper-parameters, i.e., (F, lr, reg), using the vanilla Uniform
method [33] as the negative sampling strategy. Then we fix (F, lr, reg) and search the rest sampling
related hyper-parameters, i.e., (α, T0), under different settings of noisy supervision (σ). See Table 4
for detailed information.

Table 4: SRNS’s hyper-parameter exploration in synthetic noise experiments (Section 4.2)

Hyper-parameter Tuning Range Opt. (Ecom-toy) Opt. (ML100k)

lr [5, 10, 50]× 10−4 0.001 0.001
reg [0, 1, 10]× 10−3 0.0 0.001
F [8, 16, 32] 32 8
α [5.0, 10.0, 20.0, 50.0] - -
T0 [50, 100] - -

In real data experiments, we conduct the standard procedure to split train/validation/test set. We
run 400 epochs and terminate training if validation performance does not improve for 100 epochs,
which has also been repeated five times. Both GMF and MLP (defined in Appendix B.3) are tested.
Adam optimizer with β1 = 0.9, β2 = 0.999 is used and the mini-batch size is set to 1024. The
lazy-update epoch number E = 1. The embedding dimension F is set as 32 (ML-1m), 16 (Pinterest)
and 8 (Ecom), respectively. We further show similar results with different F ∈ {8, 16, 32, 64}
in Appendix C.4. The rest hyper-parameters are tuned according to the best NDCG@1 on the
validation set. Specifically, first we use grid search to find the best group of non-sampling related
hyper-parameters, i.e., (lr, reg), using the vanilla Uniform method [33] as the negative sampling
strategy (For MLP based r we also search H). Then we fix them and search the rest sampling related
hyper-parameters, i.e., (τ, α, T0, S1, S2/S1). To ease the tuning process, we first fix α and T0 as
0 (difficulty-only sampling), then search the best (τ, S1, S2/S1). After that we fix them and search
the best group of (α, T0) (variance-based sampling). Also, we repeat above step by changing memory
size S1 to its next or previous value. For example, if current best S1 is 16, we further test 8 and 32.
Note that we do not search sampling related hyper-parameters when using MLP based r, by directly
using those for GMF. See Table 5 for detailed information.
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Table 5: SRNS’s hyper-parameter exploration in real data experiments (Section 4.3)

Para. Tuning Range Opt. (Ecom) Opt. (ML1m) Opt. (Pinterest)

SRNS
GMF

lr [5, 10, 50, 100]× 10−4 0.001 0.001 0.001
reg [0, 1, 10, 100]× 10−4 0.001 0.01 0.0
τ [0.5, 1.0, 2.0, 10.0] 2.0 10.0 10.0
α [0.1, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0] 0.0 5.0 5.0
T0 [25, 50, 100] 25 50 50
S1 [2, 4, 8, 16, 32] 8 8 16

S2/S1 [1, 2, 4, 8] 2 8 4

SRNS
MLP

lr [5, 10, 50]× 10−4 0.001 0.001 -
reg [0, 1, 10, 100]× 10−4 0.001 0.01 -
H [0, 1, 2, 3] 3 3 -

Table 6: Baselines’ hyper-parameter exploration in real data experiments (Section 4.3)

Method Para. Tuning Range Opt. (Ecom) Opt. (ML1m) Opt. (Pinterest)

Uniform lr [5, 10, 50, 100]× 10−4 0.001 0.001 0.001
reg [0, 1, 10, 100]× 10−4 0.001 0.01 0.0

NNCF

lr [5, 10, 50, 100]× 10−4 0.001 0.001 0.001
reg [0, 1, 10, 100]× 10−4 0.0 0.0 0.0
b [32, 64, 128, 256, 512, 1024, 2048] 32 2048 2048
s [1, 2, 4] 2 2 2

ENMF
lr [5, 10, 50, 100]× 10−4 0.01 0.01 0.005
reg [0, 1, 10, 100]× 10−4 0.001 0.0001 0.0
c [0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7] 0.1 0.3 0.01

AOBPR
lr [5, 10, 50, 100]× 10−4 0.0005 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.001 0.01 0.0
λ [5, 10, 20, 50, 100, 200, 500, 1000, 2000] 10 1000 2000

IRGAN
lr [5, 10, 50, 100]× 10−4 0.0005 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.001 0.001 0.001
τ [0.5, 1.0, 2.0] 2.0 1.0 1.0

RNS-AS

lr [5, 10, 50, 100]× 10−4 0.001 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.0 0.001 0.01
τ [0.5, 1.0, 2.0, 10.0] 1.0 0.5 0.5
Ns [10, 20, 30, 40] 10 10 10

AdvIR

lr [5, 10, 50, 100]× 10−4 0.0005 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.0 0.0001 0.001
ε [1, 10, 100]× 10−2 0.01 0.01 0.01
τ [0.5, 1.0, 2.0, 10.0] 1.0 1.0 1.0
Ns [10, 20, 30, 40] 10 10 10

As for the baselines listed in Appendix B.2, except Uniform [33] that have been tuned as above,
others have also been carefully tuned according to their validation NDCG@1. For IRGAN, RNS-AS
and AdvIR using GAN-based structure, we use a pretrained model (i.e., trained under Uniform) to
initialize. See Table 6 for detailed information.

B.5 Evaluation Metrics

As defined in Section 4.1, our used metrics, i.e., Recall and NDCG, can provide a comprehensive
evaluation of model performance. The former measures whether the ground truth item is presented on
the ranked list, while the latter measures the performance at a finer granularity by accounting for the
position of hit. The two datasets (ML-100k and Ecom-toy) used in synthetic noise experiments are
rather small, with the item count |I| between 1000∼2000, while the rest three in real data experiments
are much larger, with the highest value as 59290 (Ecom). Thus in real data experiments, we follow
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a common strategy [19, 23] to fix the list length |Su| as 100, by randomly sampling 100 − |Gu|
non-interacted items, because ranking the whole item set for each user is too time-consuming during
evaluation. When reporting NDCG@k and Recall@k, we choose a rather small value of truncated
length k ∈ {1, 3}, because of following two reasons: (1) In real applications of implicit CF like
recommender systems, users tend to browse the items at first few positions of a list, making the
accuracy of rest recommended items less important. (2) In real data experiments we fix the length of
a ranked list as 100, thus choosing a large k may make this task too easy.

B.6 Variance Computation

To calculate the prediction variance std[Ppos(k|u, i)] (Eq. (4)) of each candidate instance (u, k) stored
in the memoryMu, we directly use the prediction results from previous iterations, without any extra
forward or backward passes in the r. In our implementation, we consider the prediction probability
in the latest few epochs, which is due to following two reasons: (1) prediction history near the
beginning period of training process is not stable for all kinds of negative instances, and thus can
be excluded from the computation. (2) this implementation makes the overhead constant (O(1)) for
each sampling operation. In our experiments, we determine the uncertainty only based on the latest 5
epochs. Specifically, at tth training epoch,

std[Ppos(k|u, i)] =

√∑t−1
s=t−5[[Ppos(k|u,i)]s−Mean[Ppos(k|u,i)]]

2

/5,

Mean[Ppos(k|u, i)] =
∑t−1

s=t−5[Ppos(k|u,i)]s/5.
(7)

In real data experiments where the datasets are much larger, it is time-consuming to compute the
prediction probability (Ppos) for all user-item pairs (|U| · |I|) at each epoch. Thus we prune the item
space for each user’s memory update process, so as to avoid logging Ppos for all items. Specifically,
for u at tth training epoch, the newly extended candidates in M̄u can only be randomly sampled from
an item set, denoted as var_setu, which has already been generated at (t− 5)th epoch. At the mean
time, for v ∈ var_setu, we log Ppos(v|u, i) values at the subsequent 5 epochs. Therefore, among u’s
memoryMu, besides the original items that have been maintained from previous epochs, the newly
added items also have the Ppos history in the latest 5 epochs, which supports the variance computation
above. Note that var_setu is also generated by random sampling from u’s non-interacted items, and
its size is larger than memory size S1, but much smaller than item count |I|. We fix |var_setu| as
3000 (ML-1m) and 600 (Pinterest, Ecom), respectively.

C Experiment Details

C.1 Dataset Description

We choose following four raw datasets and build five datasets for performance evaluation.

• Movielens (ML)-100k2. This is a widely used movie-rating dataset containing 100,000
ratings on movies from 1 to 5. We follow the common preprocessing to convert it into
implicit feedback data, regarding those high-rated records (4 ∼ 5) as positive labels [28, 37].

• Movielens (ML)-1m3. Similarly to ML-100k, this large dataset contains 1,000,000 ratings.
After similar converting procedure, we filter out users with less than 5 records.

• Pinterest4. This implicit feedback dataset is constructed by [16] for a task of image
recommendation, and has been used for evaluating the implicit CF task [19].

• Ecommerce (Ecom). This implicit feedback dataset is a subset of users’ item-click records
in a real-word E-commerce website between 2017/06 and 2017/07. For data preprocessing,
we filter out users/items with less than 4 records, so as to overcome the problem of high
sparsity. After that, we further obtain a toy dataset, denoted as Ecom-toy, by retaining top
1,000 users and 2,000 items sorted by number of records.

2https://grouplens.org/datasets/movielens/100k
3https://grouplens.org/datasets/movielens/1m
4https://pinterest.com
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C.2 Details of Figure 1

The experiment is conducted on ML-100k dataset, using the same train/test split as synthetic noise
experiments. We use GMF as the r and Uniform [33] as the negative sampling strategy. By flipping
labels of groundtruth records in the test set, we are able to obtain a set of false negative instances (FN)
that are in fact positive labeled but unobserved during the negative sampling process. Besides
uniformly sampling negative instances (UN) to update the model, we simultaneously obtain a series
of hard negative instances (HN) with different difficulty D. In following analysis, we adopt a
simple yet effective strategy to control D of a obtained HN: 1) uniformly sample D candidates from
{(u, j)|j /∈ Ru}; 2) select the negative instance with the highest value of ruj . When D gets higher,
HN becomes much harder. UN is the same as HN with D = 1.

As in Figure 1(a), we have a closer look at the negative instances’ distribution in terms of their positive-
label probabilities Ppos that are proportional to the prediction scores. This is motivated by [46] that
has observed a skewed distribution of negative instances when learning knowledge graph embeddings.
Specifically, (a) is the distribution of negative instances {(u, j)|u ∈ U , j /∈ Ru} at 5 timestamps. We
measure the complementary cumulative distribution function (CCDF) F (x) = P (Ppos ≥ x) to show
the proportion of negative instances that satisfy Ppos ≥ x. Since hard negative instances generally
have large Ppos, we compare them with those false negative instances w.r.t. Ppos (Figure 1(b)).
We use the median value (p50) to represent each set. Then in Figure 1(c), we further analyze the
possibility of using Ppos to discriminate above two sets of negative instances. Specifically, under
different hard negative sampling strategies, we calculate the label error ratio in each mini-batch,
i.e., LER = (# of false negative samples)/(# of all selected negative samples). Unlike others, false
negative instances follow the similar distribution as those positive instances in training data. Thus
the model can ideally become more and more confident about predicting them as positive instances,
and the corresponding variance of Ppos is low. Finally, to validate this, we compare Ppos’s variance
between different types of negative instances in Figure 1(d). The normalized variance is measured by
the ratio between standard deviation and mean value.

C.3 Synthetic Noise Experiments

To control the impact of false negative instances on the sampling process, we manually inject noisy
labels by slightly modifying each user’s memory M that stores S1 candidate negative instances.
Specifically, for user u, there is always an instance inMu that is randomly sampled from u’s false
negative set Fu, and this instance is also dynamically updated together withMu. As for the rest
S1 − 1 candidates inMu, they cannot be selected from Fu. To control the noise ratio, we vary
the size of false negative set by randomly sampling σ × 100 (%) from Fu (σ ∈ [0, 1]). Note that

(a) σ = 0, ML-100k (b) σ = 0.2, ML-100k (c) σ = 0.6, ML-100k (d) σ = 0.8, ML-100k

(e) σ = 0, Ecom-toy (f) σ = 0.3, Ecom-toy (g) σ = 0.7, Ecom-toy (h) σ = 1, Ecom-toy

Figure 5: Detailed results of Figure 3: Test NDCG vs. number of epochs on two datasets, with the
error bar for STD highlighted as a shade.
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σ = 0 indicates an “ideal” case whereMu is not influenced by Fu. In these experiments, we fix the
memory size S1 as 20.

Note that in the “ideal” case with no explicit noise, SRNS still largely outperforms in Ecom-toy
dataset, which is also reasonable given the fact that F cannot ideally cover all the false negative
instances hidden in unlabeled data.

In each figure of Figure 5, the blue curve represents the result of difficulty-only sampling strategy,
while the grey curve and orange curve both represent those of the SRNS, with the difference on
whether to linearly increase weight αt during training process. It can be clearly observed that the
“warm-start” setting of αt performs better than a fixed-value setting, as the former better leverages
prediction variance after false negative instances become stable. More detailed investigation on
different settings of αt are shown in following two tables.

Table 7: Detailed investigation of “warm-start” on ML-100k, σ = 1.0 (Figure 3(a)).

T0/α 5 10 20 50

Flat 0 0.3703±0.0033 0.3811±0.0048 0.3876±0.0054 0.4004±0.0112

Increased 50 0.3734±0.0045 0.3931±0.0097 0.3924±0.0050 0.3965±0.0099
100 0.3725±0.0111 0.3850±0.0075 0.4062±0.0073 0.3844±0.0078

Decreased 50 0.3631±0.0066 0.3677±0.0049 0.3700±0.0064 0.3623±0.0108
100 0.3620±0.0063 0.3650±0.0039 0.3710±0.0062 0.3719±0.0055

Table 8: Detailed investigation of “warm-start” on Ecom-toy, σ = 0.5 (Figure 3(b).

T0/α 5 10 20 50

Flat 0 0.2449±0.0052 0.2557±0.010 0.2525±0.0063 0.2343±0.0019

Increased 50 0.2574±0.0051 0.2702±0.0048 0.2515±0.0053 0.2329±0.0090
100 0.2464±0.0051 0.2581±0.0072 0.2636±0.0091 0.2267±0.0092

Decreased 50 0.2037±0.0064 0.2351±0.0081 0.2367±0.0091 0.2365±0.0110
100 0.2120±0.0029 0.2351±0.0062 0.2348±0.0051 0.2513±0.0053

C.4 Real Data Experiments

Figure 6 shows test NDCG of Uniform and SRNS approaches using different embedding size F . The
scoring function r is GMF. Again we can observe consistent improvement of SRNS over Uniform
when F ∈ {8, 16, 32, 64}. Although increasing F should have improved performance, we observe
instead that F = 16 performs the best on Pinterest dataset, which conforms to a previous work (Figure
4 in [19]).

Figure 7 shows supplementary results, w.r.t. NDCG@3 and Recall@3, of Figure 4(d)-(f), which are
similar to those findings w.r.t. NDCG@1.
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(a) F , N@1, Pinterest (b) F , N@3, Pinterest (c) F , R@3, Pinterest

(d) F , N@1, Ecom (e) F , N@3, Ecom (f) F , R@3, Ecom

Figure 6: Varying embedding dimension F : Test NDCG/Recall of Uniform and SRNS approaches,
using different embedding size F , on Pinterest and Ecom, respectively.

(a) S1, N@3, ML-1m (b) S1, R@3, ML-1m (c) S1, N@3, Pinterest

(d) S1,R@3, Pinterest (e) S1, N@3, Ecom (f) S1, R@3, Ecom

Figure 7: Detailed results of Figure 4(e) and (f): Test NDCG@3/Recall@3 vs. SRNS’s memory size
S1, using different sampling strategies on three datasets.
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