
Efficient Neural Architecture Search via Proximal Iterations

Quanming Yao1∗, Ju Xu3∗, Wei-Wei Tu1, Zhanxing Zhu2,3,4†
14Paradigm Inc, 2School of Mathematical Sciences, Peking University

3Center for Data Science, Peking University, 4Beijing Institute of Big Data Research (BIBDR)
{yaoquanming, tuweiwei}@4paradigm.com, {xuju, zhanxing.zhu}@pku.edu.cn

Abstract

Neural architecture search (NAS) attracts much research at-
tention because of its ability to identify better architectures
than handcrafted ones. Recently, differentiable search methods
become the state-of-the-arts on NAS, which can obtain high-
performance architectures in several days. However, they still
suffer from huge computation costs and inferior performance
due to the construction of the supernet. In this paper, we pro-
pose an efficient NAS method based on proximal iterations
(denoted as NASP). Different from previous works, NASP
reformulates the search process as an optimization problem
with a discrete constraint on architectures and a regularizer on
model complexity. As the new objective is hard to solve, we
further propose an efficient algorithm inspired by proximal it-
erations for optimization. In this way, NASP is not only much
faster than existing differentiable search methods, but also can
find better architectures and balance the model complexity.
Finally, extensive experiments on various tasks demonstrate
that NASP can obtain high-performance architectures with
more than 10 times speedup over the state-of-the-arts.

1 Introduction
Deep networks have been applied to many applications,
where proper architectures are extremely important to ensure
good performance. Recently, the neural architecture search
(NAS) (Zoph and Le 2017; Baker et al. 2017) has been de-
veloped as a promising approach to replace human experts
on designing architectures, which can find networks with
fewer parameters and better performance (Yao et al. 2018;
Hutter, Kotthoff, and Vanschoren 2018). NASNet (Zoph and
Le 2017) is the pioneered work along this direction and it
models the design of convolutional neural networks (CNNs)
as a multi-step decision problem and solves it with reinforce-
ment learning (Sutton and Barto 1998).

However, since the search space is discrete and extremely
large, NASNet requires a month with hundreds of GPU to
obtain a satisfying architecture. Later, observing the good

∗Q. Yao and J. Xu contribute equally, and the work was per-
formed when J. Xu was an intern in 4Paradigm.
†Zhanxing Zhu is the corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

transferability of networks from small to large ones, NASNet-
A (Zoph et al. 2017) proposed to cut the networks into blocks
and then the search only needs to be carried within such a
block or cell. The identified cell is then used as a building
block to assemble large networks. Such two-stage search
strategy dramatically reduces the size of the search space,
and subsequently leads to the significant speedup of various
previous search algorithms (e.g., evolution algorithm (Real et
al. 2018), greedy search (Liu et al. 2018), and reinforcement
learning (Zhong et al. 2018)).

Although the size of search space is reduced, the search
space is still discrete that is generally hard to be efficiently
searched (Parikh and Boyd 2013). More recent endeavors
focused on how to change the landscape of the search space
from a discrete to a differentiable one (Luo et al. 2018;
Liu, Simonyan, and Yang 2019; Xie et al. 2019). The benefit
of such idea is that a differentiable space enables compu-
tation of gradient information, which could speed up the
convergence of underneath optimization algorithm. Various
techniques have been proposed, e.g., DARTS (Liu, Simonyan,
and Yang 2019) smooths design choices with softmax and
trains an ensemble of networks; SNAS (Xie et al. 2019)
enhances reinforcement learning with a smooth sampling
scheme. NAO (Luo et al. 2018) maps the search space into a
new differentiable space with an auto-encoder.

Among all these works (Tab. 1), the state-of-the-art is
DARTS (Liu, Simonyan, and Yang 2019) as it combines the
best of both worlds, i.e., fast gradient descent (differentiable
search space) within a cell (small search space). However, its
search efficiency and performance of identified architectures
are still not satisfying enough. As it maintains a supernet
during the search, from the computational perspective, all op-
erations need to be forward and backward propagated during
gradient descent while only one operation will be selected.
From the perspective of performance, operations typically
correlate with each other (Xie et al. 2019), e.g., a 7x7’s con-
volution filter can cover a 3x3 one as a special case. When
updating a network’s weights, the ensemble constructed by
DARTS during the search may lead to inferior architecture be-
ing discovered. Moreover, as mentioned in (Xie et al. 2019),
DARTS is not complete (Tab. 1), i.e., the final structure needs
to be re-identified after the search. This causes a bias between

ar
X

iv
:1

90
5.

13
57

7v
3

 [
cs

.L
G

]
 2

0
N

ov
 2

01
9

Table 1: Comparison of the proposed NASP with other state-of-the-art NAS methods on four perspectives of searching:
differentiable (denoted as “diff”), cell, complete, and constraint.

space complete complexity discrete search algorithmdiff cell control architectures
NASNet-A (Zoph et al. 2017) ×

√ √ √
× reinforcement learning

AmoebaNet (Real et al. 2018) ×
√ √ √

× evolution algorithm
SNAS (Xie et al. 2019)

√ √
×

√ √
reinforcement learning

DARTS (Liu, et.al. 2019)
√ √

× × × gradient descent
NASP (proposed)

√ √ √ √ √
proximal algorithm

the searched architecture and the final architecture, and might
lead to a decay on the performance of the final architecture.

In this work, we propose NAS with proximal iterations
(NASP) to improve the efficiency and performance of existing
differentiable search methods. We give a new formulation
and optimization algorithm to NAS problem, which allows
searching in a differentiable space while keeping discrete
architectures. In this way, NASP removes the need of training
a supernet, then speeds up the search and leads to better
architectures. Our contributions are

• Except for the popularly discussed perspectives of NAS,
i.e., search space, completeness, and model complexity,
we identify a new and important one, i.e., constraint on
architectures (“discrete architectures” in Tab. 1), to NAS.

• We formulate NAS as a constrained optimization problem,
which keeps the space differentiable but enforces archi-
tectures being discrete during the search, i.e., only one
of all possible operations to be actually employed during
forward and backward propagation. This helps improve
searching efficiency and decouple different operations dur-
ing the training. A regularizer is also introduced into the
new objective, which allows control of architectures’ size.

• Since such discrete constraint is hard to optimize and sim-
ple adaptation of DARTS cannot be applied, we propose a
new algorithm derived from the proximal iterations (Parikh
and Boyd 2013) for optimization. The closed-form solution
to the proximal step with the proposed discrete constraint
is new to the optimization literature, and removes the ex-
pensive second-order approximation required by DARTS.
We further provide a theoretical analysis to guarantee con-
vergence of the proposed algorithm.
• Finally, experiments are performed with various bench-

mark data sets on designing CNN and RNN architec-
tures. Compared with state-of-the-art methods, the pro-
posed NASP is not only much faster (more than ten times
speedup over DARTS) but also can discover better archi-
tectures. These empirically demonstrate NASP can obtain
the state-of-the-art performance on both test accuracy and
computation efficiency.

The implementation of NASP is available at: https://github.
com/xujinfan/NASP-codes.

2 Related Works
In the sequel, vectors are denoted by lowercase boldface, and
matrices by uppercase boldface.

2.1 Proximal Algorithm (PA)
Proximal algorithm (PA) (Parikh and Boyd 2013), is a popu-
lar optimization technique in machine learning for handling
constrained optimization problem as minx f(x), s.t. x ∈ S,
where f is a smooth objective and S is a constraint set. The
crux of PA is the proximal step:

x = proxS(z) = arg min
y

1/2 ‖y − z‖22 s.t. y ∈ S. (1)

Closed-form solution for the PA update exists for many con-
straint sets in (1), such as `1- and `2-norm ball (Parikh and
Boyd 2013). Then, PA generates a sequence of xt by

xt+1 = proxS(xt − ε∇f(xt)), (2)

where ε is the learning rate. PA guarantees to obtain the
critical points of f when S is a convex constraint, and pro-
duces limit points when the proximal step can be exactly
computed (Yao et al. 2017). Due to its nice theoretical guar-
antee and good empirical performance, it has been applied
to many deep learning problems, e.g., network binarization
(Bai, Wang, and Liberty 2018).

Another variant of PA with lazy proximal step (Xiao 2010)
maintains two copies of x, i.e.,

x̄t = proxS(xt), xt+1 = xt − ε∇f(x̄t), (3)

which is also popularily used in deep learning for network
quantization (Courbariaux, Bengio, and David 2015; Hou,
Yao, and Kwok 2017). It does not have convergence guarantee
in the nonconvex case, but empirically performs well on
network quantization tasks. Finally, neither (2) nor (3) have
been introduced into NAS.

2.2 Differentiable Architecture Search (DARTS)
DARTS (Liu, Simonyan, and Yang 2019) searchs architec-
ture by cells (Fig. 1(a)), which is a directed acyclic graph
consisting of an ordered sequence of N nodes, and it has
two input nodes and a single output node (Zoph et al. 2017).
Within a cell, each node x(i) is a latent representation and
each directed edge (i, j) is associated with some operations
O(i, j) that transforms x(i) to x(j). Thus, each interme-
diate node is computed using all of its predecessors, i.e.,
x(j) =

∑
i<j O

(i,j)(x(i)) as in Fig. 1(a). However, such
search space is discrete. DARTS uses softmax relaxation to
make discrete choices into smooth ones (Fig. 1(b)), i.e., each
O(i,j) is replaced by Ō(i,j) as

Ō(i,j)(x(i)) = 1/C
∑|O|

m=1
exp(a(i,j)

m)Om(x(j)), (4)

where C =
∑|O|

n=1 exp(a
(i,j)
n) is a normalization term, Om

denotes the m-th operation in search space O. Thus, the
choices of operations for an edge (i, j) is replaced by a real
vector a(i,j) = [a

(i,j)
k] ∈ R|O|, and all choices in a cell can

be represented in a matrix A = [a(i,j)] (see Fig. 1(d)).
With such a differentiable relaxation, the search problem

in DARTS is formulated as

min
A
Lval (w∗,A) , s.t. w∗ = arg min

w
Ltrain (w,A) , (5)

where Lval (resp. Ltrain) is the loss on validation (resp. train-
ing) set, and gradient descent is used for the optimization.
Let the gradient w.r.t. A is

∇ALval (w,A) =∇ALval (w̄(A),A)

−ε∇2
A,wLtrain(w,A)∇ALval(w̄,A), (6)

where ε > 0 is the step-size and a second order derivative, i.e.,
∇2

2,1(·) is involved. However, the evaluation of the second
order term is extremely expensive, which requires two extra
computations of gradient w.r.t. w and two forward passes of
A. Finally, a final architecture Ā needs to be discretized from
the relaxed A (see Alg.1).

Algorithm 1 Differentiable architecture search (DARTS)
(Liu, Simonyan, and Yang 2019).
1: Create a mixture operation Ō(i,j) parametrized by (4);
2: while not converged do
3: Update At by (6);

// with second-order approximation;
4: Update wt by∇wtLtrain(wt,A

t+1) using back-propagation;
// with all operations;

5: end while
6: Drive the discrete architecture Ā from continuous A;

// not complete;
7: return final architecture Ā.

Due to the differentiable relaxation in (4), an ensem-
ble of operations (i.e., a supernet) are maintained and all
operations in the search space need to be forward and
backward-propagated when updating w; the evaluation of
the second order term in (6) is very expensive known
as a computation bottleneck of DARTS (Xie et al. 2019;
Noy et al. 2019). Besides, the performance obtained from
DARTS is also not as good as desired. Due to the possible
correlations among operations and the need of deriving a
new architecture after the search (i.e., lack of completeness)
(Xie et al. 2019). Finally, the objective (5) in DARTS does
not consider model complexity, which means DARTS cannot
control the model size of the final architectures.

3 Our Approach: NASP
As introduced in Sec.2.2, DARTS is a state-of-the-art NAS
method, however, it has three significant limitations:

a). search efficiency: the supernet resulting obtained from
softmax trick in (4) is expensive to train;

b). architecture performance: correlations exist in operations,
which can lead to inferior architectures.

c). model complexity: depending on applications, we may
also want to trade accuracy for smaller models; however,
this is not allowed in DARTS.

Recall that in earlier works of NAS (see Tab. 1), e.g., NAS-
Net (Baker et al. 2017; Zoph and Le 2017) and GeNet (Xie
and Yuille 2017), architectures are discrete when updating
networks’ parameters. Such discretization naturally avoids
the problem of completeness and correlations among oper-
ations compared with DARTS. Thus, can we search in a
differentiable space but keep discrete architectures when up-
dating network’s parameters? This motivates us to formulate
a new search objective for NAS (Sec.3.1), and propose a new
algorithm for optimization (Sec.3.2).

3.1 Search Objective
As NAS can be seen as a black-box optimization problem
(Yao et al. 2018; Hutter, Kotthoff, and Vanschoren 2018),
here, we bring the wisdom of constraint optimization to deal
with the NAS problem.

Discrete constraint Specifically, we keep A being continu-
ous, which allows the usage of gradient descent, but constrain
the values of A to be discrete ones. Thus, we propose to use
the following relaxation instead of (4) on architectures:

Ō(i,j)(x(i))=
∑|O|

k=1
a

(i,j)
k Ok(x(j)), s.t. a(i,j)∈C, (7)

where the constraint set is defined as C =
{a | ‖a‖0 = 1, and 0 ≤ ak ≤ 1}. While a(i,j) is con-
tinuous, the constraint C keeps its choices to be discrete, and
there is one operation actually activated for each edge during
training network parameter w as illustrated in Fig. 1(c).

Regularization on model complexity Besides, in the
search space of NAS, different operations have distinct num-
ber of parameters. For example, the parameter number of
”sep conv 7x7” is ten times that of operation ”conv 1x1”.
Thus, we may also want to regularize model parameters to
trade-off between accuracy and model complexity (Cai, Zhu,
and Han 2019; Xie et al. 2019).

Recall that, one column in A denotes one possible opera-
tion (Fig. 1(d)), and whether one operation will be selected
depending on its value a(i,j) (a row in A). Thus, if we sup-
press the value of a specific column in A, its operation will
be less likely to be selected in Alg.2, due to the proximal step
on C1. These motivate us to introduce a regularizerR(A) as

R(A) =
∑|O|

k=1
pk/p̄ ‖ȧk‖22 , (8)

where ȧk is the kth column in A, the parameter number with
the ith operation is pi, and p̄ =

∑|O|
i=1 pi.

Search objective Finally, the NAS problem, with our new
relaxation (7) and regularization (8), becomes

min
A
F (w∗,A) , s.t.

{
w∗=arg min

w
Ltrain (w,A)

a(i,j) ∈ C
, (9)

where F(w,A) = Lval (w,A) + ηR(A) with η ≥ 0 balanc-
ing between the complexity and the accuracy, and a larger η
leads to smaller architectures.

(a) Cell in NAS. (b) DARTS. (c) NASP. (d) Parameter A.

Figure 1: Comparison of computation graph in a cell between DARTS (Fig. 1(b)) and NASP (Fig. 1(c)). Three operations are
considered, DARTS needs to forward and backward propagate along all operations for updating w, while NASP only requires
computing along current selected one. The architecture parameters a

(i,j)
k can be arranged into a matrix form (Fig. 1(d)).

Remark 1. Literally, learning with a discrete constraint
has only been explored with parameters, e.g., deep net-
works compression with binary weights (Courbariaux, Ben-
gio, and David 2015), and gradient quantization (Alistarh
et al. 2017), but not in hyper-parameter or architecture op-
timization. Meanwhile, other constraints have been consid-
ered in NAS, e.g., memory cost and latency (Tan et al. 2018;
Cai, Zhu, and Han 2019). We are the first to introduce
searched constraints on architecture into NAS (Tab. 1).

3.2 Search Algorithm
Solving the new NAS objective (9) here is not trivial. Due to
the extra constraint and regularizer, neither simple adaptation
of DARTS nor PA can be applied. In the sequel, we propose
a new variant of PA algorithm for efficient optimization.

Failure of existing algorithms A direct solution would
be PA mentioned in Sec.2.1, then architecture At+1 can be
either updated by (2), i.e.,

At+1 = proxC(At − ε∇Āt
F (w(At),At)), (10)

or updated by lazy proximal step (3), i.e.,

Āt = proxC(At),

At+1 = At − ε∇Āt
F(w(Āt), Āt), (11)

where the gradient can be evaluated by (6) and computation
of second-order approximation is still required. Let C1 =
{a | ‖a‖0 = 1} and C2 = {a | 0 ≤ ak ≤ 1}, i.e., C = C1 ∩
C2. The closed-form solution on proximal step is offered in
Proposition 1 (Proofs in Appendix A.1).

Proposition 1. proxC(a) = proxC1(proxC2(a)).

However, solving (9) is not easy. Due to the discrete nature
of the constraint set, proximal iteration (10) is hard to ob-
tain a good solution (Courbariaux, Bengio, and David 2015).
Besides, while (3) empirically leads to better performance
than (2) in binary networks (Courbariaux, Bengio, and David
2015; Hou, Yao, and Kwok 2017; Bai, Wang, and Liberty
2018), lazy-update (11) will not success here neither. The
reason is that, as in DARTS (Liu, Simonyan, and Yang 2019),
At is naturally in range [0, 1] but (11) can not guarantee
that. This in turn will bring negative impact on the searching
performance.

Proposed algorithm Instead, motivated by Proposition 1,
we keep A to be optimized as continuous variables but con-
strained by C2. Similar box-constraints have been explored in
sparse coding and non-negative matrix factorization (Lee and
Seung 1999), which help to improve the discriminative ability
of learned factors. Here, as demonstrated in experiments, it
helps to identify better architectures. Then, we also introduce
another discrete Ā constrained by C1 derived from A during
iterating. Note that, it is easy to see Āt ∈ C is guaranteed.
The proposed procedure is described in Alg.2.

Algorithm 2 NASP: Efficient Neural Architecture Search
with Proximal Iterations.
1: Create a mixture operation Ō(i,j) parametrized by (7);
2: while not converged do
3: Get discrete architectures: ā(i,j)

t = proxC1(a
(i,j)
t);

4: Update At+1 = proxC2(At −∇Āt
F(wt, Āt));

// no second-order approximation
5: Refine discrete architectures: ā(i,j)

t+1 = proxC1(a
(i,j)
t+1);

6: Update wt by∇wtLtrain(wt, Ā
t+1) using back-propagation;

// with the selected operations
7: end while
8: return Searched architecture Āt.

Compared with DARTS, NASP also alternatively updates
architecture A (step 4) and network parameters w (step 6).
However, note that A is discretized at step 3 and 5. Specifi-
cally, in step 3, discretized version of architectures are more
stable than the continuous ones in DARTS, as it is less likely
for subsequent updates in w to change Ā. Thus, we can take
wt (step 4) as a constant w.r.t. Ā, which helps us remove the
second order approximation in (6) and significantly speed up
architectures updates. In step 5, network weights need only
to be propagated with the selected operation. This helps to
reduce models’ training time and decouples operations for
training networks. Finally, we do not need an extra step to
discretize architecture from a continuous one like DARTS,
since a discrete architecture is already maintained during the
search. This helps us to reduce the gap between the search
and fine-tuning, which leads to better architectures being
identified.

Theoretical analysis Finally, unlike DARTS and PA with
lazy-updates, the convergence of the proposed NASP can be

Table 2: Classification errors of NASP and state-of-the-art image classifiers on CIFAR-10.
Method Test Error (%) Para (M) Time (GPU days)
DenseNet-BC (Huang et al. 2017) 3.46 25.6 —
NASNet-A + cutout (Zoph et al. 2017) 2.65 3.3 1800
AmoebaNet + cutout (Real et al. 2018) 2.55±0.05 2.8 3150
PNAS (Liu et al. 2018) 3.41±0.09 3.2 225
ENAS (Pham et al. 2018) 2.89 4.6 0.5
Random search + cutout (Liu, Simonyan, and Yang 2019) 3.29±0.15 3.2 4
DARTS (1st-order) + cutout (Liu, Simonyan, and Yang 2019) 3.00±0.14 3.3 1.5
DARTS (2nd-order) + cutout 2.76±0.09 3.3 4
SNAS (large complexity) + cutout (Xie et al. 2019) 2.98 2.9 1.5
SNAS (middle complexity) + cutout 2.85±0.02 2.8 1.5
SNAS (small complexity) + cutout 3.10±0.04 2.3 1.5
NASP (7 operations) + cutout 2.83±0.09 3.3 0.1
NASP (12 operations) + cutout 2.44±0.04 7.4 0.2

guaranteed in Theorem 2. The proof is in Appendix A.2.

Theorem 2. Let maxF(w,A) <∞ andF be differentiable,
then the sequence {At} generated by Alg.2 has limit points.

Note that, previous analysis cannot be applied. As the algo-
rithm steps are different from all previous works, i.e., (Hou,
Yao, and Kwok 2017; Bai, Wang, and Liberty 2018), and it
is the first time that PA is introduced into NAS. While two
assumptions are made in Theorem 2, smoothness of F can be
satisfied using proper loss functions, e.g., the cross-entropy
in this paper, and the second assumption can empirically hold
in our experiments.

4 Experiments
Here, we perform experiments with searching CNN and RNN
structures. Four datasets, i.e., CIFAR-10, ImageNet, PTB,
WT2 will be utilized in our experiments (see Appendix B.1).

4.1 Architecture Search for CNN
Searching Cells on CIFAR-10 Same as (Zoph and Le
2017; Zoph et al. 2017; Liu, Simonyan, and Yang 2019;
Xie et al. 2019; Luo et al. 2018), we search architectures on
CIFAR-10 ((Krizhevsky 2009)). Following (Liu, Simonyan,
and Yang 2019), the convolutional cell consists of N = 7
nodes, and the network is obtained by stacking cells for 8
times; in the search process, we train a small network stacked
by 8 cells with 50 epochs (see Appendix B.2). Two differ-
ent search spaces are considered here. The first one is the
same as DARTS and contains 7 operations. The second one
is larger, which contains 12 operations (see Appendix B.3).
Besides, our search space for normal cell and reduction cell
is different. For normal cell, the search space only consists of
identity and convolutional operations; for reduction cell, the
search space only consists of identity and pooling operations.

Results compared with state-of-the-art NAS methods can
be found in Tab. 2, the searched cells are in Appendix C.2.
Note that ProxlessNAS (Cai, Zhu, and Han 2019), Mnasnet
(Tan et al. 2018), and Single Path One-Shot (Guo et al. 2019)
are not compared as their codes are not available and they
focus on NAS for mobile devices; GeNet (Xie and Yuille
2017) is not compared, as its performance is much worse than
ResNet. Note that we remove the extra data augmentation

for ASAP except cutout for a fair comparison. We can see
that when in the same space (with 7 operations), NASP has
comparable performance with DARTS (2nd-order) and is
much better than DARTS (1st-order). Then, in the larger
space (with 12 operations), NASP is still much faster than
DARTS, with much lower test error than others. Note that,
NASP on the larger space also has larger models, as will be
detailed in Sec.4.3, this is because NASP can find operations
giving lower test error, while others cannot.

Regularization on model complexity In above experi-
ments, we have set η = 0 for (9). Here, we vary η and the
results on CIFAR-10 are demonstrated in Fig.2. We can see
that the model size gets smaller with larger η.

Figure 2: Impact of penalty.

Transfering to ImageNet In order to explore the trans-
ferability of our searched cells on ImageNet, we stack the
searched cells for 14 times. The experiment results can be
seen in Tab. 4. Notably, NASP can achieve competitive test
error with the state-of-the-art methods.

4.2 Architecture Search for RNN
Searching cells on PTB Following the setting of DARTS
(Liu, Simonyan, and Yang 2019), the recurrent cell consists
of N = 12 nodes; the first intermediate node is obtained
by linearly transforming the two input nodes, adding up the
results and then passing through a tanh activation function;
then the results of the first intermediate node should be trans-
formed by an activation function. The activation functions
utilized are tanh, relu, sigmoid and identity. In the search
process, we train a small network with sequence length 35
for 50 epochs. To evaluate the performance of searched cells
on PTB, a single-layer recurrent network with the discovered

Table 3: Comparison with state-of-the-art language models on PTB (lower perplexity is better).

Architecture Perplexity (%) Params Time
valid test (M) (GPU days)

NAS (Zoph and Le 2017) - 64.0 25 10,000
ENAS (Pham et al. 2018) 68.3 63.1 24 0.5
Random search (Liu, Simonyan, and Yang 2019) 61.8 59.4 23 2
DARTS (1st-order) (Liu, Simonyan, and Yang 2019) 60.2 57.6 23 0.5
DARTS (2nd-order) 59.7 56.4 23 1
NASP 59.9 57.3 23 0.1

Table 4: Classification accuracy of NASP and state-of-the-art
image classifiers on ImageNet.

Architecture Test Error (%) Params
top1 top5 (M)

Inception-v1 (Szegedy et al. 2015) 30.2 10.1 6.6
MobileNet (Howard et al. 2017) 29.4 10.5 4.2
ShuffleNet 2 (Ma et al. 2018) 25.1 10.1 ∼5
NASNet-A (Zoph et al. 2017) 26.8 8.4 5.3
AmoebaNet (Real et al. 2018) 24.3 7.6 6.4
PNAS (Liu et al. 2018) 25.8 8.1 5.1
DARTS (2nd-order) 26.9 9.0 4.9
SNAS (middle complexity) 27.3 9.2 4.3
NASP (7 operations) 27.2 9.1 4.6
NASP (12 operations) 26.3 8.6 9.5

cell is trained for at most 8000 epochs until convergence with
batch size 64. Results can be seen in Tab. 3, and searched
cells are in Appendix C.2. Again, we can see DARTS’s 2nd-
order is much slower than 1st-order, and NASP can be not
only much faster than DARTS but also achieve comparable
test performance with other state-of-the-art methods.

Transferring to Wiki-Text2 Following (Liu, Simonyan,
and Yang 2019), we test the transferable ability of RNN’s cell
with WikiText-2 (WT2) (Pham et al. 2018) dataset. We train
a single-layer recurrent network with the searched cells on
PTB for at most 8000 epochs. Results can be found in Tab. 7.
Unlike previous case with ImageNet, performance obtained
from NAS methods are not better than human designed ones.
This is due to WT2 is harder to be transferred, which is also
observed in (Liu, Simonyan, and Yang 2019).

4.3 Ablation Study
Comparison with DARTS In Sec.4.1, we have shown an
overall comparison between DARTS and NASP. Here, we
show detailed comparisons on updating network’s parame-
ter (i.e., w) and architectures (i.e., A). Timing results and
searched performance are in Tab. 5. First, NASP removes
much computational cost, as no 2nd-order approximation of
A and propagating w with selected operations. This clearly
justifies our motivation in Sec.3.1. Second, the discretized Ā
helps to decouple operations on updating w, this helps NASP
find better operations under larger search space.

We conduct experiments to compare the search time and
validation accuracy in Fig. 3(a)-(b). We can see that in the
same search time, our NASP obtains higher accuracy while

our NASP cost less time in the same accuracy. This further
verifies the efficiency of NASP over DARTS.

(a) #ops = 12. (b) #ops = 7.

Figure 3: Comparison of NASP and DARTS on convergence.

Finally, we illustrate why the second order approximation
is a need for DARTS but not for NASP. Recall that, as in
Sec.2.2, as A continuously changes during iteration second
order approximation is to better capture w’s impact for A.
Then, in Sec.3.2, we argue that, since Ā is discrete, w’s im-
pact will not lead to frequent changes in Ā. This removes the
needs of capturing future dynamics using the second order
approximation. We plot A for DARTS and Ā for NSAP in
Fig. 4. In Fig. 4, the x-axis represents the training epochs
while the y-axis represents the operations (there are five op-
erations selected in our figure). There are 14 connections
between nodes, so there are 14 subfigures in both Fig. 4(a)
and 4(b). Indeed, Ā is more stable than A in DARTS, which
verifies the correctness of our motivation.

(a) DARTS. (b) NASP.

Figure 4: Comparison on changes of architecture parameters
between DARTS and NASP.

Comparison with standard PA Finally, we demonstrate
the needs of our designs in Sec.3.2 for NASP. CIFAR-10
with small search space is used here. Three algorithms are
compared: 1). PA (standard), given by (10); 2). PA (lazy-
update), given by (11); and 3) NASP. Results are in Fig. 5(a)
and Fig. 5(b). First, good performance cannot be obtained
from a direct proximal step, which is due to the discrete
constraint. Same observation is also previous made for binary

Table 5: Detailed comparison on computation time between DARTS and the proposed NASP on CIFAR-10. Note that DARTS
needs to search four times to obtain a good architecture (Liu, Simonyan, and Yang 2019) while the performance from NASP is
from one search. Thus the speedup here is small than that in Table 4.

computational time / epoch (in seconds)
of update A (validation) update w (training) total error params

operations 1st-order 2nd-order forward backward (%) (M)
7 DARTS 270 1315 103 162 1693 2.76 3.3

NASP 176 - 25 31 343 2.83 3.3
12 DARTS 489 2381 187 293 3060 3.0 8.4

NASP 303 - 32 15 483 2.5 7.4

Table 6: Classification errors of NASP and concurrent works on CIFAR-10. “Ops” denotes the number of operations in the search
space; “Nodes” denotes the number of nodes in a cell.

Architecture Test Error (%) Para (M) Ops Nodes Time (GPU days)
ASAP (Noy et al. 2019) 3.06 2.6 7 4 0.2
ASNG (Akimoto et al. 2019) 2.83±0.14 3.9 5 5 0.1
BayesNAS (Zhou et al. 2019) 2.81±0.04 3.40±0.62 7 4 0.2
GDAS (Dong and Yang 2019) 2.82 2.5 8 4 0.3
NASP (7 operations) + cutout 2.83±0.09 3.3 7 4 0.1
NASP (12 operations) + cutout 2.44±0.04 7.4 12 4 0.2

Table 7: Comparison with state-of-the-art language models
on WT2. SNAS do not provide codes on RNN and results are
not reported neither.

Architecture Perplexity (%) Params
valid test (M)

LSTM (Yang et al. 2018) 66.0 63.3 33
ENAS (Pham et al. 2018) 72.4 70.4 33
DARTS (2nd order) 71.2 69.6 33
NASP 70.4 69.5 33

networks (Courbariaux, Bengio, and David 2015). Second,
PA(lazy-update) is much better than PA(standard) but still
worse than NASP. This verifies the needs to keep elements of
the matrix A in [0, 1], as it can encourage better operations.

(a) #ops = 12. (b) #ops = 7.

Figure 5: Comparison of NASP and direct usages of PA (i.e.,
simple adaptation of DARTS) on convergence.

4.4 Comparison with Concurrent Works
When we conducted our work, there were some concurrent
works. ASAP (Noy et al. 2019) and BayesNAS (Zhou et
al. 2019) take NAS as a network pruning problem, they re-
move operations that are not promising during the search.
ASNG (Akimoto et al. 2019) and GDAS (Dong and Yang
2019) both take stochastic relaxation to the search space,

the difference is that ASNG uses natural gradient descent
(Amari 1998) for optimization while GDAS use Gumbel-
Max trick (Jang, Gu, and Poole 2016) with gradient descent.
We compare NASP with them in Tab. 6 and 8. Note that
ASAP, ASNG and BayesNAS cannot be used for searching
RNN’s architectures. We can see NASP is more efficient than
these works and offer better performance on the CNN task.
Besides, NASP can also be applied with RNN.

Table 8: Comparison of NASP with concurrent works on
PTB. ASAP, ASNG and BayesNAS are not compared as they
cannot be used for searching RNN.

Method Perplexity (%) Params Search Cost
valid test (M) (GPU days)

GDAS 59.8 57.5 23 0.4
NASP 59.9 57.3 23 0.1

5 Conclusion
We introduce NASP, a fast and differentiable neural architec-
ture search method via proximal iterations. Compared with
DARTS, NASP is more efficient and performs better. The
key contribution of NASP is the proximal iterations in search
process. This approach makes only one operation updated,
which saves much time and makes it possible to utilize a
larger search space. Besides, our NASP eliminates the corre-
lation among operations. Experiments demonstrate that our
NASP is faster and obtain better performance than baselines.

Acknowledgments
Q. Yao would like to thank Xiangning Chen, Yongqi Zhang,
and Huan Zhao for their helpful feedback. Z. Zhu is supported
in part by National Natural Science Foundation of China
(No.61806009), Beijing Natural Science Foundation(No.

4184090) and Beijing Academy of Artificial Intelligence
(BAAI).

References
Akimoto, Y.; Shirakawa, S.; Yoshinari, N.; Uchida, K.; Saito,
S.; and Nishida, K. 2019. Adaptive stochastic natural gradient
method for one-shot neural architecture search. In ICML,
171–180.
Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic,
M. 2017. QSGD: Communication-efficient sgd via gradient
quantization and encoding. In NeurIPS, 1709–1720.
Amari, S. 1998. Natural gradient works efficiently in learning.
Neural Computation 10(2):251–276.
Bai, Y.; Wang, Y.-X.; and Liberty, E. 2018. Proxquant:
Quantized neural networks via proximal operators. In ICLR.
Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2017. De-
signing neural network architectures using reinforcement
learning. In ICLR.
Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
ICLR.
Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Bi-
naryconnect: Training deep neural networks with binary
weights during propagations. In NeurIPS, 3123–3131.
Devries, T., and Taylor, G. 2017. Improved regularization of
convolutional neural networks with cutout. Technical report,
arXiv:1708.04552.
Dong, X., and Yang, Y. 2019. Searching for a robust neural
architecture in four GPU hours. In CVPR, 1761–1770.
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.; and
Sun, J. 2019. Single path one-shot neural architecture search
with uniform sampling. Technical report, Arvix.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hou, L.; Yao, Q.; and Kwok, J. 2017. Loss-aware binarization
of deep networks. In ICLR.
Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.;
Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. CVPR.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K.
2017. Densely connected convolutional networks. In CVPR,
4700–4708.
Hutter, F.; Kotthoff, L.; and Vanschoren, J., eds. 2018. Au-
tomated Machine Learning: Methods, Systems, Challenges.
Springer.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparame-
terization with gumbel-softmax. In ICLR.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, Citeseer.
Le, Y., and Yang, X. 2015. Tiny imagenet visual recognition
challenge. CS 231N.
Lee, D., and Seung, S. 1999. Learning the parts of objects
by non-negative matrix factorization. Nature 401:788–791.
Liu, C.; Zoph, B.; Shlens, J.; Hua, W.; Li, L.; Li, F.-F.; Yuille,
A.; Huang, J.; and Murphy, K. 2018. Progressive neural
architecture search. In ECCV.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable architecture search. In ICLR.
Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018.
Neural architecture optimization. In NeurIPS.
Ma, N.; Zhang, X.; Zheng, H.; and Sun, J. 2018. ShuffleNet
V2: Practical guidelines for efficient CNN architecture design.
ECCV 122–138.
Noy, A.; Nayman, N.; Ridnik, T.; Zamir, N.; Doveh, S.; Fried-
man, I.; Giryes, R.; and Zelnik-Manor, L. 2019. ASAP: Ar-
chitecture search, anneal and prune. Technical report, arXiv
preprint arXiv:1904.04123.
Parikh, N., and Boyd, S. 2013. Proximal algorithms. Foun-
dations and Trends in Optimization 1(3):123–231.
Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient neural architecture search via parameter sharing.
Technical report, arXiv preprint.
Real, E.; Aggarwal, A.; Huang, T.; and Le, Q. 2018. Reg-
ularized evolution for image classifier architecture search.
arXiv.
Sutton, R., and Barto, A. 1998. Reinforcement learning: An
introduction. MIT press.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. E.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. CVPR 1–9.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; and Le, Q. 2018.
Mnasnet: Platform-aware neural architecture search for mo-
bile. Technical report, arXiv.
Xiao, L. 2010. Dual averaging methods for regular-
ized stochastic learning and online optimization. JMLR
11(Oct):2543–2596.
Xie, L., and Yuille, A. 2017. Genetic CNN. In ICCV.
Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2019. SNAS: stochas-
tic neural architecture search. In ICLR.
Yang, Z.; Dai, Z.; Salakhutdinov, R.; and Cohen, W. 2018.
Breaking the softmax bottleneck: A high-rank rnn language
model. In ICLR.
Yao, Q.; Kwok, J.; Gao, F.; Chen, W.; and Liu, T.-Y. 2017.
Efficient inexact proximal gradient algorithm for nonconvex
problems. In IJCAI, 3308–3314. AAAI Press.
Yao, Q.; Wang, M.; Chen, Y.; Dai, W.; Hu, Y.; Li, Y.; Tu,
W.-W.; Yang, Q.; and Yu, Y. 2018. Taking human out of
learning applications: A survey on automated machine learn-
ing. Technical report, arXiv preprint.
Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; and Liu, C.-L. 2018.
Practical block-wise neural network architecture generation.
In CVPR.
Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. BayesNAS:
A bayesian approach for neural architecture search. In ICML,
7603–7613.
Zoph, B., and Le, Q. 2017. Neural architecture search with
reinforcement learning. In ICLR.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. 2017. Learn-
ing transferable architectures for scalable image recognition.
In CVPR.

A Proofs
A.1 Proposition 1
Proof. Recall that C = C1 ∩ C2 where C1 = {a | ‖a‖0 = 1}
and C2 = {a | 0 ≤ ak ≤ 1}, and the proximal step is given
by

proxC(a) = b∗ = arg min
b

1

2
‖a− b‖22 , (12)

s.t. a ∈ C1 ∩ C2.

Constrain C1 is means b∗ can be represented as c ei where c is
a parameter to be determined and ei is a one-hot vector with
the ith element being 1 and all others are zeros; moreover,
constrain C2 means c must be in range [0, 1]. Let a be a
k-dimensional vector, then (12) can be decomposed as k
separable problems, i.e.,

c∗i = arg min
c

1

2
‖a− c ei‖22 , for i = 1, . . . , k. (13)

where

c∗i =


0 if ai < 0

ai if 0 ≤ ai ≤ 1

1 otherwise
.

Let vi = 1
2 (ai − c∗i)

2 and v = [v1, . . . , vk]. These contain
all k possible solutions for (12). Thus, in order to achieve
the minimum, we need to pick up i∗ = arg maxi vi, and
b∗ = c∗i∗ei∗ . More compactly, we can express it as

proxC(a) = proxC1(proxC2(a)).

A.2 Theorem 2
Proof. Note that by the definition of loss functions,

• F is the loss on the validation set, thus F is bounded from
below;

• F is continuous on A.

Since At ∈ C2 and maxF(wt,At) <∞, thus {At} is con-
strained within a compact sublevel set. Finally, the Theorem
comes from the fact that any infinite sequences on a compact
sub-level set must have limit points.

B Experiment Details
B.1 Datasets
CIFAR-10 CIFAR-10 (Krizhevsky 2009)1 is a basic
dataset for image classification, which consists of 50,000
training images and 10,000 testing images. Half of the
CIFAR-10 training images will be utilized as the validation
set. Data augmentation like cutout (Devries and Taylor 2017)
and HorizontalFlip will be utilized in our experiments. After
training, we will test the model on test dataset and report
accuracy in our experiments.

1http://www.cs.toronto.edu/∼kriz/cifar.html

PTB PTB2 is an English corpus used for probabilistic lan-
guage modeling, which consists of approximately 7 million
words of part-of-speech tagged text, 3 million words of skele-
tally parsed text, over 2 million words of text parsed for
predicate-argument structure, and 1.6 million words of tran-
scribed spoken text annotated for speech dis-fluencies. We
will choose the model with the best performance on valida-
tion dataset and test it on test dataset.

WT2 Compared to the preprocessed version of Penn Tree-
bank (PTB), 3WikiText-2 (WT2) is over 2 times larger. WT2
features a far larger vocabulary and retains the original case,
punctuation and numbers - all of which are removed in
PTB.As it is composed of full articles, the dataset is well
suited for models that can take advantage of long term depen-
dencies. We will choose the model with the best performance
on validation dataset and test it on test dataset.

B.2 Training details
For training CIFAR-10, the convolutional cell consists of
N=7 nodes, and the network is obtained by stacking cells
for 8 times; in the search process, we train a small network
stacked by 8 cells with 50 epochs. SGD is utilized to optimize
the network’s weights, and Adam is utilized for the parame-
ters of network architecture. To evaluate the performance of
searched cells, the searched cells are stacked for 20 times; the
network will be fine-tuned for 600 epochs with batch size 96.
Additional enhancements like path dropout (of probability
0.2) and auxiliary towers (with weight 0.4) are also used. We
have run our experiments for three times and report the mean.

B.3 Search Space
NASP’s search space: identity, 1x3 then 3x1 convolution, 3x3
dilated convolution, 3x3 average pooling, 3x3 max pooling,
5x5 max pooling, 7x7 max pooling, 1x1 convolution, 3x3
convolution, 3x3 depthwise-separable conv, 5x5 depthwise-
seperable conv, 7x7 depthwise-separable conv.

C More Experiments
C.1 Transferring to Tiny ImageNet
Dataset Tiny ImageNet (Le and Yang 2015)4 contains a
training set of 100,000 images, a testing set of 10,000 im-
ages. These images are sourced from 200 different classes
of objects from ImageNet. Note that due to small number
of training images for each class and low-resolution for im-
ages, Tiny ImageNet is harder to be trained than the original
ImageNet. Data augmentation like RandomRotation and Ran-
domHorizontalFlip are utilized. After training, we will test
the model on test dataset and report accuracy in our experi-
ments.

Results The architecture transferability is important for
cells to transfer to other datasets (Zoph et al. 2017). To
explore the transferability of our searched cells, we stack

2http://www.fit.vutbr.cz/∼imikolov/rnnlm/simple-examples.tgz
3https://s3.amazonaws.com/research.metamind.io/wikitext/

wikitext-2-v1.zip
4http://tiny-imagenet.herokuapp.com/

Table 9: Classification accuracy of NASP and state-of-the-art image classifiers on Tiny ImageNet.

Method Test Accuracy (%) Params Search Cost
top1 top5 (M) (GPU days)

ResNet18 (He et al. 2016) 52.67 76.77 11.7 -
NASNet-A (Zoph et al. 2017) 58.99 77.85 4.8 1800
AmoebaNet-A (Real et al. 2018) 57.16 77.62 4.2 3150
ENAS (Pham et al. 2018) 57.81 77.28 4.6 0.5
DARTS (Liu, Simonyan, and Yang 2019) 57.42 76.83 3.9 4
SNAS (Xie et al. 2019) 57.81 76.93 3.3 1.5
NASP 58.12 77.62 4.0 0.1
NASP (more ops) 58.32 77.54 8.9 0.2

searched cells for 14 times on Tiny ImageNet, and train the
network for 250 epochs. Results are in Tab. 9. We can see
NASP exhibits good transferablity, and its performance is
also better than other methods except NASNet-A. But our
NASP is much faster than NASNet-A.

C.2 Searched Architectures
Architectures identified on CIFAR-10 are shown in Fig.6 and
7, on PTB is shown in Fig.8.

