首页 > 关于我们 > 公司新闻 > 正文

狙击光纤激光器稳定性“杀手”

狙击光纤激光器稳定性“杀手”

来源: 发布时间:2022-08-05 357
扫码看直播回放

光纤激光器英文名称为Fiber Laser,指用掺稀土元素玻璃光纤作为增益介质的激光器,其中掺镱光纤是高功率掺镱光纤激光系统最核心的器件之一,然而随着光纤激光器输出功率的提升,各种稳定性“杀手”比如横向模式不稳定(Transverse Mode Instability, TMI受激拉曼散射(Stimulated Raman Scattering, SRS)现象以及热损伤等浮出水面。

不久前,凯普林光纤激光器产品总监赵巨云线上分享《高功率光纤激光器前沿技术与创新应用》,详细描述了如何狙击光纤激光器稳定性“杀手”。本期,我们一起回顾。

光纤激光器主要由泵浦源、增益介质(有源光纤)、谐振腔三大部分构成。

谐振腔结构光纤激光器原理:通过前向和后向的合束器,将泵浦半导体激光器LD的功率经过光纤光栅(高发光栅HR、低反光栅OC)注入到掺镱双包层光纤(YDF)中。YDF中稀土离子吸收泵光后,形成粒子数反转分布,产生自发辐射光,然后在光纤光栅对(HR-OC)的作用下形成受激辐射光放大产生激光,并经过OC和输出光缆QBH输出出来。

放大器结构光纤激光器原理:与谐振腔相似,所不同的是通过前级的种子源激光器来减少了系统对单元器件承受功率的要求。进而可以得到更高的功率。

谐振腔结构光纤激光器

放大器结构光纤激光器


横向模式不稳定TMI效应

横向模式不稳定是指高功率光纤激光在达到某一特定阈值后,随着输出功率提升或超过一定时间发生的由稳态基模输出突然变为非稳态高阶模式输出,它会导致光束质量下降,限制光纤激光输出功率的提升。
横模不稳定效应原理示意图
实验数据
模式不稳定发生后,基模和高阶模式之间的功率会不断耦合,总功率不变。
当存在弯曲滤模等机制时,基模损耗小,高阶模式的弯曲损耗大,导致绿线的高阶模式被滤除,则输出端表现为时域上的基模抖动。
20μm,0.065NA光纤的弯曲损耗

模式不稳定物理机理
影响因素
不同于传统高能激光,模式不稳定是热效应与光纤模式的耦合导致的,因此,模式不稳定的影响因素除了与废热有关还与光纤的模式特性有关。
光纤废热影响因素:
  • 光纤掺杂特性影响(掺杂浓度和掺杂区域半径
  • 暗化的影响信号特性的影响(信号光功率、信号强度噪音、信号初始高阶模比例、信号光波长、信号强度调制)
  • 泵浦特性影响(泵浦功率、泵浦波长、泵浦强度调制)
  • 泵浦方式的影响(前向泵浦、后向泵浦、侧向泵浦和双向泵浦)
  • 光纤材料的影响

光纤模式影响因素:
  • 光纤芯径/包层直径、光纤纤芯数值孔径

  • 高阶模损耗

  • 系统制冷能力

  • 光纤保偏特性

  • 信号光线宽
抑制方法
针对模式不稳定的抑制方法主要从增加热管理能力和模式管控能力方面下手。
增加热管理能力:
  • 增强增益饱和(减小纤芯包层比、改变半导体泵浦源的波长、改变泵浦光注入方向、增加注入信号功率 、同带泵浦、改变信号波长)

  • 减少光纤热源

  • 增强光纤热光性能
增加模式管控能力:
  • 提高弯曲损耗(减少弯曲半径、减小纤芯数值孔径、优化光纤盘绕方法、减少纤芯直径、增加信号光波长

  • 优化光纤设计

  • 增加信号光谱宽

受激拉曼散射效应

受激拉曼散射效应(Stimulated Raman Scattering,简称SRS效应),是激光在基质传输过程中,光子与介质产生相互作用,激光向长波转换的过程。受激拉曼散射成为影响光纤激光器功率提高的主要非线性效应因素之一。
掺镱光纤受激拉曼散射效应主要取决于纤芯直径、光纤长度、掺杂浓度以及抽运方式等。
抑制方法
1.纤芯直径对输出的影响
随着抽运光功率增大到一定值时 , 光纤激光器中出现受激拉曼散射, 输出激光功率开始减小 。在正向抽运下 , 当光纤长度一定 ( L =15 m) ,纤芯直径增加,SRS的功率阈值会大幅提升。为了减小受激拉曼散射的影响 , 可以采用大直径纤芯的光纤。
2.光纤长度对输出的影响
正向抽运下 , 当纤芯直径一定(20μm),随着光纤长度的增加,SRS的阈值会急剧降低。通过减小光纤长度, 可以得到较高的输出功率。
3. 掺杂浓度对输出的影响
正向抽运下 ,随着掺杂浓度增大 , 受激拉曼散射的阈值抽运光功率减小, 最大输出激光功率减小。高掺杂浓度的光纤中 , 高功率的激光与光纤的作用距离较长 , 更容易出现受激拉曼散射。
实际的高功率双包层光纤激光器 , 为了获得较高的输出激光功率, 可以适当地选择低掺杂浓度的光纤。
未来得益于大模场面积( Large ModeArea, LMA)增益光纤技术、 高功率高亮度半导体泵浦源和高功率泵浦耦合技术的进步, 我国光纤激光器也将不断向着更大功率、 更高光束质量的方向发展。

现场提问

1
光纤激光器内部结构是怎么样的?

从整机来说,光纤激光器内部由光、机、电三部分组构成。光的构成部分就是我在报告上提到三大块:泵浦源、谐振腔、增益介质,泵浦源就是半导体激光器,谐振腔就是通过光栅合束器构成的,增益介质就是有源光纤。

2
激光器内部谐振腔熔点温度高有哪些原因造成的?怎么样去处理让温度降低?

激光器内部谐振腔熔点温度高的原因其实很多,这是一个很复杂的工艺问题。可能是由光纤的匹配、熔接质量、泵浦吸收转化这些因素造成的。对于这种光纤匹配来说呢,一般我们会选择相同类型的光纤激光器,尽量芯径相同,最起码包层直径更接近一些,这样会减少熔接匹配损耗。还有熔接质量,就是我们熔接机的各种熔接参数设置可以有很多优化区域,通过大小调整等方法优化参数。还有一个是泵浦转化率,我们在选择泵浦源、有源光纤的时候要做更多优化。另外,整个散热设计更优的话,可以达到更好的效果。

3
为什么同一品牌同型号的两台激光器,切割相同板材时表现不一样?

切割是一个工艺过程,相对比较复杂,光纤激光器本身的输出特性也很多,就像功率、光谱等这些因素每台激光器是不一样的,而这些因素都会对切割产生一定的影响。同时,切割的时候还涉及到切割头、喷嘴、板材等等,这个综合性的变量很多,所以很难说两台激光器切割效果一模一样。但现在我们都在努力提升激光器的整体容差,切割工艺的容差提高了,面对各种变量也可以达到相对一致的切割效果,完全一致目前还是很难办到的。

 
凯普林光电成立于2003年,是面向全球的激光解决方案服务商。公司以“让梦想驭光而行”为使命,以“创变非凡”为价值观,致力于创造更好的激光产品,为全球客户提供半导体激光器光纤激光器超快激光器产品及解决方案。
凯普林官网:www.bwt-bj.com


 更多精彩内容,欢迎点击观看

分享: